In this paper, we show the construction of orthogonal wavelet basis on the interval [0, 1],using compactly supportted Daubechies function. Forwardly, we suggest a kind of method to deal with the differential operator ...In this paper, we show the construction of orthogonal wavelet basis on the interval [0, 1],using compactly supportted Daubechies function. Forwardly, we suggest a kind of method to deal with the differential operator in view of numerical analysis and derive the appoximation algorithm of wavelet ba-sis and differential operator, which affects on the basis, to functions belonging to L2 [0, 1 ]. Numerical computation indicate the stability and effectiveness of the algorithm.展开更多
We study the structure of Bernstein's first summable operators and show that they con- verge uniformly to continuons functions on the special real orthogonal group SO(n)in this paper.In addition,we have also discu...We study the structure of Bernstein's first summable operators and show that they con- verge uniformly to continuons functions on the special real orthogonal group SO(n)in this paper.In addition,we have also discussed the approximation degree to a class of function Lipα(0<α≤1)on SO(n).展开更多
It is well known that Tikhonov regularization in standard form may determine approximate solutions that are too smooth for ill-posed problems,so fractional Tikhonov methods have been introduced to remedy this shortcom...It is well known that Tikhonov regularization in standard form may determine approximate solutions that are too smooth for ill-posed problems,so fractional Tikhonov methods have been introduced to remedy this shortcoming.And Tikhonov regularization for large-scale linear ill-posed problems is commonly implemented by determining apartial Arnoldi decomposition of the given matrix.In this paper,we propose a new method to compute an approximate solution of large scale linear discrete ill-posed problems which applies projection fractional Tikhonov regularization in Krylov subspace via Arnoldi process.The projection fractional Tikhonov regularization combines the fractional matrices and orthogonal projection operators.A suitable value of the regularization parameter is determined by the discrepancy principle.Numerical examples with application to image restoration are carried out to examine that the performance of the method.展开更多
According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can...According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can be controlled within the tri-axial orthogonal square Helmholtz coils (TOSHC). Nevertheless, three coupling direction angles of the normal vector of the SURMF in the Descartes coordinate system cannot be separately controlled, thus the adjustment of the orientation of the SURMF is difficult and the flexibility of the robotic posture control is restricted. For the dimension reduction and the decoupling of control variables, the orthogonal transformation operation theorem of the SURMF is proposed based on two independent rotation angular variables, which employs azimuth and altitude angles as two variables of the three-phase sine current superposition formula derived by the orthogonal rotation inverse transformation. Then the unique control rules of the orientation and the rotational direction of the SURMF are generalized in each spatial quadrant, thus the scanning of the normal vector of the SURMF along the horizontal or vertical direction can be achieved through changing only one variable, which simplifies the control process of the orientation of the SURMF greatly. To validate its feasibility and maneuverability, experiments were conducted in the animal intestine utilizing the innovative dual hemisphere capsule robot (DHCR) with active and passive modes. It was demonstrated that the posture adjustment and the steering rolling locomotion of the DHCR can be realized through single variable control, thus the orthogonal transformation operation theorem makes the control of the orientation of the SURMF convenient and flexible significantly. This breakthrough will lay a foundation for the human-machine interaction control of the SURMF.展开更多
文摘In this paper, we show the construction of orthogonal wavelet basis on the interval [0, 1],using compactly supportted Daubechies function. Forwardly, we suggest a kind of method to deal with the differential operator in view of numerical analysis and derive the appoximation algorithm of wavelet ba-sis and differential operator, which affects on the basis, to functions belonging to L2 [0, 1 ]. Numerical computation indicate the stability and effectiveness of the algorithm.
文摘We study the structure of Bernstein's first summable operators and show that they con- verge uniformly to continuons functions on the special real orthogonal group SO(n)in this paper.In addition,we have also discussed the approximation degree to a class of function Lipα(0<α≤1)on SO(n).
基金supported by the National Natural Science Foundations of China(Nos.11571171and 61473148)
文摘It is well known that Tikhonov regularization in standard form may determine approximate solutions that are too smooth for ill-posed problems,so fractional Tikhonov methods have been introduced to remedy this shortcoming.And Tikhonov regularization for large-scale linear ill-posed problems is commonly implemented by determining apartial Arnoldi decomposition of the given matrix.In this paper,we propose a new method to compute an approximate solution of large scale linear discrete ill-posed problems which applies projection fractional Tikhonov regularization in Krylov subspace via Arnoldi process.The projection fractional Tikhonov regularization combines the fractional matrices and orthogonal projection operators.A suitable value of the regularization parameter is determined by the discrepancy principle.Numerical examples with application to image restoration are carried out to examine that the performance of the method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51277018, 61175102, & 51475115)the Open Fund of the State Key Laboratory of Mechanical Transmissions (Grant No.SKLMT-KFKT-201509)
文摘According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can be controlled within the tri-axial orthogonal square Helmholtz coils (TOSHC). Nevertheless, three coupling direction angles of the normal vector of the SURMF in the Descartes coordinate system cannot be separately controlled, thus the adjustment of the orientation of the SURMF is difficult and the flexibility of the robotic posture control is restricted. For the dimension reduction and the decoupling of control variables, the orthogonal transformation operation theorem of the SURMF is proposed based on two independent rotation angular variables, which employs azimuth and altitude angles as two variables of the three-phase sine current superposition formula derived by the orthogonal rotation inverse transformation. Then the unique control rules of the orientation and the rotational direction of the SURMF are generalized in each spatial quadrant, thus the scanning of the normal vector of the SURMF along the horizontal or vertical direction can be achieved through changing only one variable, which simplifies the control process of the orientation of the SURMF greatly. To validate its feasibility and maneuverability, experiments were conducted in the animal intestine utilizing the innovative dual hemisphere capsule robot (DHCR) with active and passive modes. It was demonstrated that the posture adjustment and the steering rolling locomotion of the DHCR can be realized through single variable control, thus the orthogonal transformation operation theorem makes the control of the orientation of the SURMF convenient and flexible significantly. This breakthrough will lay a foundation for the human-machine interaction control of the SURMF.