A new and simple method is developed to establish the pseudo orthogonal properties (POP) of the eigenfunction expansion form (EEF) of crack-tip stress complex potential functions for cracked anisotropic an...A new and simple method is developed to establish the pseudo orthogonal properties (POP) of the eigenfunction expansion form (EEF) of crack-tip stress complex potential functions for cracked anisotropic and piezoelectric materials, respectively. Di?erent from previous research, the complex argument separation technique is not required so that cumbersome manipulations are avoided. Moreover, it is shown, di?erent from the previous research too, that the orthogonal properties of the material characteristic matrices A and B are no longer necessary in obtaining the POP of EEF in cracked piezoelectric materials. Of the greatest signi?cance is that the method presented in this paper can be widely extended to treat many kinds of problems concerning path- independent integrals with multi-variables.展开更多
To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal test...To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models.展开更多
In this investigation,the effect of friction stir welding(FSW)parameters such as tool pin profiles,rotational speed and welding speed on the mechanical properties of tensile strength,hardness and impact energy of magn...In this investigation,the effect of friction stir welding(FSW)parameters such as tool pin profiles,rotational speed and welding speed on the mechanical properties of tensile strength,hardness and impact energy of magnesium alloy AZ31 was studied.The experiments were carried out as per Taguchi parametric design concepts and an L9 orthogonal array was used to study the influence of various combinations of process parameters.Statistical optimization technique,ANOVA,was used to determine the optimum levels and to find the significance of each process parameter.The results indicate that rotational speed(RS)and transverse speed(TS)are the most significant factors,followed by tool pin profile(PF),in deciding the mechanical properties of friction stir welded magnesium alloy.In addition,mathematical models were developed to establish relationship between different process variables and mechanical properties.展开更多
Ultra-high molecular weight polyethylene(UHMWPE) fiber/epoxy composites were fabricated by a vacuum assisted resin infused(VARI) processing technology. The curing condition of composites was at a cure temperature ...Ultra-high molecular weight polyethylene(UHMWPE) fiber/epoxy composites were fabricated by a vacuum assisted resin infused(VARI) processing technology. The curing condition of composites was at a cure temperature of 80 ℃ for 3h in a drying oven. The characteristics of 2.5D(shallow bend-joint and deep straight-joint) structure and 3D orthogonal structure were compared. The failure behavior, flexural strength, and microstructures of both composites were investigated. It was found that the flexural property was closely related to undulation angle θ. The flexural strength of 3D orthogonal structure composite was superior to the other two structures composites with the same weave parameters and resin.展开更多
OpticallylabeledIM/FSKsignalsaretransmittedover50kmofSMFunderdifferentcompensationschemes.All-optical label swapping based on MZ-SOA and EAM is presented. Transmission followed by label swapping shows a 2dB overall po...OpticallylabeledIM/FSKsignalsaretransmittedover50kmofSMFunderdifferentcompensationschemes.All-optical label swapping based on MZ-SOA and EAM is presented. Transmission followed by label swapping shows a 2dB overall power penalty.展开更多
In this paper,we consider Ramanujan’s sums over arbitrary Dedekind domain with finite norm property.We define the Ramanujan’s sumsη(a,A)andη(B,A),where a is an arbitrary element in a Dedekind domain,B is an ideal ...In this paper,we consider Ramanujan’s sums over arbitrary Dedekind domain with finite norm property.We define the Ramanujan’s sumsη(a,A)andη(B,A),where a is an arbitrary element in a Dedekind domain,B is an ideal and A is a non-zero ideal.In particular,we discuss the Kluyver formula and Hèolder formula forη(a,A)andη(B,A).We also prove the reciprocity formula enjoyed byη(B,A)and the orthogonality relations forη(a,A)in the last two parts.展开更多
基金Project supported by the Natural Science Foundation of Shaanxi Province (No.2002A18) and the Doctorate Foundation of Xi’an Jiao-Tong University.
文摘A new and simple method is developed to establish the pseudo orthogonal properties (POP) of the eigenfunction expansion form (EEF) of crack-tip stress complex potential functions for cracked anisotropic and piezoelectric materials, respectively. Di?erent from previous research, the complex argument separation technique is not required so that cumbersome manipulations are avoided. Moreover, it is shown, di?erent from the previous research too, that the orthogonal properties of the material characteristic matrices A and B are no longer necessary in obtaining the POP of EEF in cracked piezoelectric materials. Of the greatest signi?cance is that the method presented in this paper can be widely extended to treat many kinds of problems concerning path- independent integrals with multi-variables.
基金the National Natural Science Foundation of China (Nos. 50674083 and 51074162) for its financial support
文摘To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models.
文摘In this investigation,the effect of friction stir welding(FSW)parameters such as tool pin profiles,rotational speed and welding speed on the mechanical properties of tensile strength,hardness and impact energy of magnesium alloy AZ31 was studied.The experiments were carried out as per Taguchi parametric design concepts and an L9 orthogonal array was used to study the influence of various combinations of process parameters.Statistical optimization technique,ANOVA,was used to determine the optimum levels and to find the significance of each process parameter.The results indicate that rotational speed(RS)and transverse speed(TS)are the most significant factors,followed by tool pin profile(PF),in deciding the mechanical properties of friction stir welded magnesium alloy.In addition,mathematical models were developed to establish relationship between different process variables and mechanical properties.
基金Funded by the National Natural Science Foundation of China(No.51001117)
文摘Ultra-high molecular weight polyethylene(UHMWPE) fiber/epoxy composites were fabricated by a vacuum assisted resin infused(VARI) processing technology. The curing condition of composites was at a cure temperature of 80 ℃ for 3h in a drying oven. The characteristics of 2.5D(shallow bend-joint and deep straight-joint) structure and 3D orthogonal structure were compared. The failure behavior, flexural strength, and microstructures of both composites were investigated. It was found that the flexural property was closely related to undulation angle θ. The flexural strength of 3D orthogonal structure composite was superior to the other two structures composites with the same weave parameters and resin.
文摘OpticallylabeledIM/FSKsignalsaretransmittedover50kmofSMFunderdifferentcompensationschemes.All-optical label swapping based on MZ-SOA and EAM is presented. Transmission followed by label swapping shows a 2dB overall power penalty.
基金Supported by the National Research and Development Program of China(Grant No.2018YFB1107402)。
文摘In this paper,we consider Ramanujan’s sums over arbitrary Dedekind domain with finite norm property.We define the Ramanujan’s sumsη(a,A)andη(B,A),where a is an arbitrary element in a Dedekind domain,B is an ideal and A is a non-zero ideal.In particular,we discuss the Kluyver formula and Hèolder formula forη(a,A)andη(B,A).We also prove the reciprocity formula enjoyed byη(B,A)and the orthogonality relations forη(a,A)in the last two parts.