A closed series solution is proposed for the bending of point-supported orthotropic rectangular thin plates. The positions of support points and the distribution of transverse loadare arbitrary. If the number of simpl...A closed series solution is proposed for the bending of point-supported orthotropic rectangular thin plates. The positions of support points and the distribution of transverse loadare arbitrary. If the number of simply supported points gradually increases the solution can infinitely approach to Navier's solution. For the square plate simply supported on the middle of each edge and free at each corner, the results are very close to the numerical solutions in the past.展开更多
Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bendin...Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with variable thickness are given;then introducing the dimensionless variables and three small parameters,the dimensionaless governing equations of the deflection function and stress function are given.展开更多
By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate wi...By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained.展开更多
The energy variational formula based on the principle of minimum potential energy is proposed for the plates constrained at arbitrary points. As an instance, the orthotropic large deflection rectangular thin plates wi...The energy variational formula based on the principle of minimum potential energy is proposed for the plates constrained at arbitrary points. As an instance, the orthotropic large deflection rectangular thin plates with four free edges and transverse displacement constraints under uniform transverse load are discussed. The generalized Fourier series are used as the trial functions of the transverse displacement and the stress function to establish the essential equations, which are linearized by means of the incremental method of load and displacement constraint. In the end of the paper, several computational results are compared with the former literature. Moreover, one typical example is demonstrated through advanced experimental technique. The result shows the accuracy is satisfied well.展开更多
文摘A closed series solution is proposed for the bending of point-supported orthotropic rectangular thin plates. The positions of support points and the distribution of transverse loadare arbitrary. If the number of simply supported points gradually increases the solution can infinitely approach to Navier's solution. For the square plate simply supported on the middle of each edge and free at each corner, the results are very close to the numerical solutions in the past.
文摘Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with variable thickness are given;then introducing the dimensionless variables and three small parameters,the dimensionaless governing equations of the deflection function and stress function are given.
文摘By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained.
文摘The energy variational formula based on the principle of minimum potential energy is proposed for the plates constrained at arbitrary points. As an instance, the orthotropic large deflection rectangular thin plates with four free edges and transverse displacement constraints under uniform transverse load are discussed. The generalized Fourier series are used as the trial functions of the transverse displacement and the stress function to establish the essential equations, which are linearized by means of the incremental method of load and displacement constraint. In the end of the paper, several computational results are compared with the former literature. Moreover, one typical example is demonstrated through advanced experimental technique. The result shows the accuracy is satisfied well.