We study the charge oscillation in the triangular quantum dots symmetrically coupled to the leads. A strong charge oscillation is observed even for a very small level difference. We attribute this oscillation behaviou...We study the charge oscillation in the triangular quantum dots symmetrically coupled to the leads. A strong charge oscillation is observed even for a very small level difference. We attribute this oscillation behaviour to the many- body effect in the strongly correlated system instead of the physical scenarios based on the mean-field approach in the previous works for the two-level dot. The level difference induces the difference of the occupations between different dots, while the symmetry of the many-body states favours the homogeneous distribution of the charge density on the three dots. The interplay of these two factors results in the charge oscillation.展开更多
The quantization of circuits has received to be rather attractive in domains of solid state—molecular—and biophysics, since the quanta referred to as Q-bits play a significant role in the design of the quantum compu...The quantization of circuits has received to be rather attractive in domains of solid state—molecular—and biophysics, since the quanta referred to as Q-bits play a significant role in the design of the quantum computer and entangled structures. Quantized circuits cannot be applied without modifications, since the energy differences are not equidistant and the polarization of the excited states has to be accounted for having particular importance for the creation of virtual states. Applications of the presented theory are scanning methods in radiotherapy without multi-leaf collimators, which may be realized in tomo-scanning radiotherapy and in the keV domain, which provides a new design of CT. The problem of lateral scatter in the target and energy storage by heat production is significantly reduced by a multilayer system with focusing the impinging electrons at the walls and by a magnetic field. The verification of the Heisenberg-Euler scatter of crossing beams of 9 MV is a central problem of photon physics and can be solved by the new bremsstrahlung technique. A comparison with GEANT 4 Monte-Carlo data indicates that the presented method also works in the GeV domain, and a multi-target can improve the bremsstrahlung yield. GEANT 4 provides the spatial distribution, whereas the virtual oscillator states only show the created energy spectrum. In every case, the exploitation yield can be drastically improved by the superiority of the focused multitarget system compared to a single standard target, and the door to new technologies is opened.展开更多
In this paper, the isotropic charged harmonic oscillator in uniform magnetic field is researched in the non-commutative phase space; the corresponding exact energy is obtained, and the analytic eigenfunction is presen...In this paper, the isotropic charged harmonic oscillator in uniform magnetic field is researched in the non-commutative phase space; the corresponding exact energy is obtained, and the analytic eigenfunction is presented in terms of the confluent hypergeometric function. It is shown that in the non-commutative space, the isotropic charged harmonic oscillator in uniform magnetic field has the similar behaviors to the Landau problem.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11174228 and 10874132)
文摘We study the charge oscillation in the triangular quantum dots symmetrically coupled to the leads. A strong charge oscillation is observed even for a very small level difference. We attribute this oscillation behaviour to the many- body effect in the strongly correlated system instead of the physical scenarios based on the mean-field approach in the previous works for the two-level dot. The level difference induces the difference of the occupations between different dots, while the symmetry of the many-body states favours the homogeneous distribution of the charge density on the three dots. The interplay of these two factors results in the charge oscillation.
文摘The quantization of circuits has received to be rather attractive in domains of solid state—molecular—and biophysics, since the quanta referred to as Q-bits play a significant role in the design of the quantum computer and entangled structures. Quantized circuits cannot be applied without modifications, since the energy differences are not equidistant and the polarization of the excited states has to be accounted for having particular importance for the creation of virtual states. Applications of the presented theory are scanning methods in radiotherapy without multi-leaf collimators, which may be realized in tomo-scanning radiotherapy and in the keV domain, which provides a new design of CT. The problem of lateral scatter in the target and energy storage by heat production is significantly reduced by a multilayer system with focusing the impinging electrons at the walls and by a magnetic field. The verification of the Heisenberg-Euler scatter of crossing beams of 9 MV is a central problem of photon physics and can be solved by the new bremsstrahlung technique. A comparison with GEANT 4 Monte-Carlo data indicates that the presented method also works in the GeV domain, and a multi-target can improve the bremsstrahlung yield. GEANT 4 provides the spatial distribution, whereas the virtual oscillator states only show the created energy spectrum. In every case, the exploitation yield can be drastically improved by the superiority of the focused multitarget system compared to a single standard target, and the door to new technologies is opened.
基金National Natural Science Foundation of China(10347003,60666001)Planned Training Excellent Scientific and Technological Youth Foundation of Guizhou Province,China(2002,2013)Science Foundation of Guizhou Province,China,and Creativity Foundation for Graduate Guizhou University,China(2006031)
文摘In this paper, the isotropic charged harmonic oscillator in uniform magnetic field is researched in the non-commutative phase space; the corresponding exact energy is obtained, and the analytic eigenfunction is presented in terms of the confluent hypergeometric function. It is shown that in the non-commutative space, the isotropic charged harmonic oscillator in uniform magnetic field has the similar behaviors to the Landau problem.