Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numeri...Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numerical wave tank based on the two-phase VOF model is established in the present study toinvestigate the operating performance of OWC air chamber. The RANS equations, standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model. The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.展开更多
Oscillating water columns(OWCs)are most widely used in coastal wave energy conversion.The air duct opens into the atmosphere through the air turbine,which is the power take-off device,and this results in a pressure dr...Oscillating water columns(OWCs)are most widely used in coastal wave energy conversion.The air duct opens into the atmosphere through the air turbine,which is the power take-off device,and this results in a pressure drop across the air chamber.However,because of the complex configure of the impulse turbine and its high rotation speed,it is difficult to install it in the experimental simulator and numerical model.Therefore,the turbine damping effects on the operation of the OWC air chamber are induced to predict its performance more accurately.Orifice plates are used as a substitute for the impulse turbine as it generates a similar pressure drop and power output;the experimental and numerical pressure drops and output powers are compared.A 3D numerical wave tank based on the two-phase VOF model is established using the commercial CFD code Fluent,which can predict air flow and pressure variations in the chamber and duct.Water surface elevations,air flow velocity and pressure variation inside the chamber with the orifice plate are studied numerically,and validated by the corresponding experimental data.The air chamber of the Yongsoo OWC pilot plant is used as the engineering project case.The operating performance of the air chamber installed with a 0.428D orifice plate as the substitute for the designed impulse turbine is computed and analyzed.It is found that the turbine damping effects will cause around 30%reduction in the peak values of the pneumatic energy output of the OWC air chamber in the resonant wave domain.展开更多
A review of multi-chamber oscillating water column(OWC)device designs is presented.Two significant variations of these devices are discussed,onshore OWC(OOWC)and a floating OWC(FOWC).The efficiency results of several ...A review of multi-chamber oscillating water column(OWC)device designs is presented.Two significant variations of these devices are discussed,onshore OWC(OOWC)and a floating OWC(FOWC).The efficiency results of several theoretical studies based on low-and high-fidelity numerical models are presented and compared with the model scale results.Generally,low-fidelity numerical models are very fast to run,but their accuracy is limited compared with high-fidelity numerical models.Scaled model experiments usually give results much more accurate than numerical models,but they need adequate facilities and are very expensive.In the case of the OOWC,all models show a similar trend of total efficiency,but while the analytical model shows a maximum value of around 90%efficiency,the CFD model shows 60%,and the experiments only go up to 40%.The main reason is connected with the mathematical simplifications and assumptions that do not represent all the hydrodynamic and aerodynamic processes between the water,air,and structure.For the case of the FOWC,interestingly,the experimental results show a maximum efficiency of almost 100%,while the analytical model only predicts a maximum of 80%.The efficiency seems highly dependent on the heave motion resonance of the entire device,where the analytical model fails to predict this natural frequency.展开更多
Oscillating water column(OWC)based wave energy absorption devices are classic which have been widely used for harnessing ocean wave energy.This paper presents a numerical study on a projecting wall(PW)type OWC wave en...Oscillating water column(OWC)based wave energy absorption devices are classic which have been widely used for harnessing ocean wave energy.This paper presents a numerical study on a projecting wall(PW)type OWC wave energy converter in regular waves.The computational fluid dynamics(CFD)modelling of a stationary floating PW-OWC model in a three-dimensional wave flume is achieved by the software Flow-3D.Numerical analyses are carried out based on CFD simulations and the linear potential flow solutions with modifications to account for turbine-induced damping.The present numerical solutions are validated against our previous experimental data.It is found that both the CFD and modified linear potential flow predictions are in reasonably good agreements with the experimental data in the first order results of OWC and air pressure responses.When the nonlinear responses are included in the result,the modified linear potential flow solution is found to slightly under-estimate the wave energy conversion performance at long wavelengths.Regarding the airflows above and below the chamber orifice,the CFD results suggest that they are almost unidirectional,oscillating in not only the base frequency but also subharmonic and ultraharmonic frequencies.The evolution of the OWC responses during an entire period and the phase analysis based on CFD simulations are presented.The phase results provide the crucial evidence to the reasonability of the physics-based modification of the potential flow model in modelling of OWCs.The present results and analysis are expected to be beneficial to the understanding on the physical mechanism of OWCs and the design of phase control strategies.展开更多
Sea wave energy generators or converters(WECs)have the potential to become a viable technology for clean,renewable energy production.Among the WEC technologies,the oscillating water columns(OWCs)are the most common WE...Sea wave energy generators or converters(WECs)have the potential to become a viable technology for clean,renewable energy production.Among the WEC technologies,the oscillating water columns(OWCs)are the most common WEC devices studied.These have been studied and developed over many years.Multi-chamber oscillating water columns(MC-OWC)have the potential to have a higher energy conversion when extracting energy in mixed sea states than single-chamber devices.In the work reported in this paper,physical experiments are carried under regular wave conditions to test the wave power extraction of a fixed MC-OWC small-scale model.The Power Take-Off(PTO)of the device is simulated using orifice plates.The flow characteristics through these orifices are pre-calibrated such that the extracted power can be obtained only using the pressure measurement.Wave condition effects on the damping of the PTO of the device power extraction are addressed.The test results illustrate that the PTO system damping is critical and affects device performance.展开更多
振荡水柱(Oscillation Water Column,OWC)是近年来发展较快的波浪能采集技术,该装置主要由箱体、振荡水柱和压缩空气柱组成,而波浪在气室内产生的压强对能量转换效率等起到决定作用。结合三维侧向开口的振荡水柱波能转换装置,基于线性...振荡水柱(Oscillation Water Column,OWC)是近年来发展较快的波浪能采集技术,该装置主要由箱体、振荡水柱和压缩空气柱组成,而波浪在气室内产生的压强对能量转换效率等起到决定作用。结合三维侧向开口的振荡水柱波能转换装置,基于线性波理论,采用三维Green函数法建立了气室内水气动力学性能的空气压强理论计算模型,利用多维切比雪夫(Chebyshev)多项式求解,计算结果精度高,能够准确表达波浪和结构设计参数对气室内压强影响。依据理论计算模型分析了波浪周期、波长、吃水深度、入射波幅等参数对气室内压强作用。展开更多
设计一种带收缩水道的沉箱防波堤和OWC(Oscillating Water Column)波能发电装置相结合的复合结构形式,开展物理模型试验研究。通过改变水道结构形式与OWC气室参数,并分析实验数据,探讨水道形式、入射波要素和OWC气室形状参数等对该复合...设计一种带收缩水道的沉箱防波堤和OWC(Oscillating Water Column)波能发电装置相结合的复合结构形式,开展物理模型试验研究。通过改变水道结构形式与OWC气室参数,并分析实验数据,探讨水道形式、入射波要素和OWC气室形状参数等对该复合结构工作性能的影响,采用气室内波幅放大系数、气室顶部空气点压力和防波堤前波浪反射率作为考察参量。展开更多
Wave tank tests were carried out to evaluate the total efficiency of a floating OWC Pentagonal Backward Bent Duct Buoy (PBBDB). Two kinds of turbine generators were used in tests. The incident wave power, pneumatic po...Wave tank tests were carried out to evaluate the total efficiency of a floating OWC Pentagonal Backward Bent Duct Buoy (PBBDB). Two kinds of turbine generators were used in tests. The incident wave power, pneumatic power and electricity were measured. The test results show that the primary efficiency can reach up to 185.98% in regular waves and 85.86% in irregular waves. The total efficiency from wave to wire with Wells turbine-generator set is 33.43% in regular waves and 15.82% in irregular waves. The peak total efficiency of the PBBDB with check valves equipped with the impulse turbine-generator set is 41.68% in regular waves and 27.10% in irregular waves. The efficiency of the turbine-generator set is about 30% in the tests. Obviously, the total efficiency can be further improved with the increasing of turbine efficiency.展开更多
In this paper,hydrodynamic wave loads on an offshore stationary-floating oscillating water column(OWC)are investigated via a 2D and 3D computational fluid dynamics(CFD)modeling based on the RANS equations and the VOF ...In this paper,hydrodynamic wave loads on an offshore stationary-floating oscillating water column(OWC)are investigated via a 2D and 3D computational fluid dynamics(CFD)modeling based on the RANS equations and the VOF surface capturing scheme.The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge.Following the validation stage,the numerical model is modified to consider the pneumatic damping effect,and an extensive campaign of numerical tests is carried out to study the wave-OWC interactions for different wave periods,wave heights and pneumatic damping factors.It is found that the horizontal wave force is usually larger than the vertical one.Also,there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency,whereas the pneumatic damping has a little effect on the horizontal force.Additionally,simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening.Furthermore,3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads,respectively.展开更多
A new oscillating water column (OWC) design is proposed in this study to incorporate a simpler Savonius type turbine. Conventional OWC devices employ a bi-directional turbine such as a Wells or an Impulse turbine to e...A new oscillating water column (OWC) design is proposed in this study to incorporate a simpler Savonius type turbine. Conventional OWC devices employ a bi-directional turbine such as a Wells or an Impulse turbine to extract energy from the air. The disadvantages of the Wells turbine include its inability to self start and stalling. The Savonius turbine is much cheaper and is an effective option at low Reynolds numbers. In the current rectangular OWC device, unlike the circular OWC, the width of entry of the capture chamber can be increased without being influenced by the diameter at the turbine section. To improve its primary capture efficiency, the front and rear walls of the OWC are inclined to minimize reflection. The Savonius rotor characteristics are studied with respect to the change in frequency of the incoming waves. The rotor rpm is sensitive to wave period and primary conversion efficiency while changes in depth only affect the rotor rpm at lower frequencies. The Savonius rotor shows promising results and can be incorporated into large scale OWC devices to reduce costs of the turbine component of the system.展开更多
This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new wa...This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new way to produce electric power automatically for large light ships.展开更多
Wave energy is a renewable source with significant amount in relation to the global demand. A good concept of a device applied to extract this type of energy is the onshore oscillating water column wave energy convert...Wave energy is a renewable source with significant amount in relation to the global demand. A good concept of a device applied to extract this type of energy is the onshore oscillating water column wave energy converter(OWC-WEC). This study shows a numerical analysis of the diameter determination of two types of turbines, Wells and Impulse, installed in an onshore OWC device subjected to a hypothetical sea state. Commercial software FLUENT?,which is based on RANS-VoF(Reynolds-Averaged Navier-Stokes equations and Volume of Fluid technique), is employed. A methodology that imposes air pressure on the chamber, considering the air compressibility effect, is used. The mathematical domain consists of a 10 m deep flume with a 10 m long and 10 m wide OWC chamber at its end(geometry is similar to that of the Pico's plant installed in Azores islands, Portugal). On the top of the chamber, a turbine works with air exhalation and inhalation induced by the water free surface which oscillates due to the incident wave. The hypothetical sea state, represented by a group of regular waves with periods from 6 to 12 s and heights from 1.00 to 2.00 m(each wave with an occurrence frequency), is considered to show the potential of the presented methodology. Maximum efficiency(relation between the average output and incident wave powers) of46% was obtained by using a Wells turbine with the diameter of 2.25 m, whereas the efficiency was 44% by an Impulse turbine with the diameter of 1.70 m.展开更多
Freely movable wave energy converters(WECs) will greatly improve their adaptability to the marine environment.In this paper, a dual-mode oscillating water column(OWC) WEC with potential sailing capability is proposed....Freely movable wave energy converters(WECs) will greatly improve their adaptability to the marine environment.In this paper, a dual-mode oscillating water column(OWC) WEC with potential sailing capability is proposed. By opening and closing a gate on the side facing the waves, the WEC converts wave energy in the vertical duct(called VD mode) with low sailing resistance or in the backward bend duct(called BBD mode) with high sailing resistance.A small model and a medium model were designed and manufactured. The capture width ratio(CWR) of the small model in the two modes was experimentally studied. The CWR under bidirectional airflow and conversion characteristics under unidirectional airflow of the medium model in the BBD mode were obtained. Tests of the small model show that the peak CWR is 145.2% under regular waves and 90.1% under random waves in BBD mode, and in VD mode the peak CWR is about 60% of that in the BBD mode. Tests of the medium model show that the peak CWR is 228.96% under regular waves, the maximum wave-to-battery efficiency is 63.36% under regular waves and 30.17%under random waves, respectively.展开更多
振荡水柱(oscillating water column,OWC)波浪发电装置因其具有结构简单、性能可靠等优点而成为目前世界上最为成功的波浪能转换装置。为促进中国对波浪能的开发,本研究中对国内外OWC波浪能发电装置的研究和开发应用进行了综述,尤其是...振荡水柱(oscillating water column,OWC)波浪发电装置因其具有结构简单、性能可靠等优点而成为目前世界上最为成功的波浪能转换装置。为促进中国对波浪能的开发,本研究中对国内外OWC波浪能发电装置的研究和开发应用进行了综述,尤其是近年来所提出的OWC波浪发电装置与防波堤相结合的新型式——OWC型防波堤,针对中国在OWC研发上存在的不足提出相应对策,并对OWC的未来发展趋势进行了展望,因地制宜地开发海岛、海洋平台等区域的波浪能将成为中国在该领域未来的研发方向。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos. 50909089 and 40911140281)Qingdao S&T Development Program(09-1-3-41-jch)Korean Ministry of Land,Transport & Maritime Affairs through KORDI Program
文摘Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numerical wave tank based on the two-phase VOF model is established in the present study toinvestigate the operating performance of OWC air chamber. The RANS equations, standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model. The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.
基金supported by the National Natural Science Foundation of China(Grant No.51279190&51311140259)Shandong Natural Science Funds for Distinguished Young Scholar(Grant No.JQ201314)+1 种基金"111"Project(Grant No.B14028)KRISO Endowment(Grant No.PES 2190)
文摘Oscillating water columns(OWCs)are most widely used in coastal wave energy conversion.The air duct opens into the atmosphere through the air turbine,which is the power take-off device,and this results in a pressure drop across the air chamber.However,because of the complex configure of the impulse turbine and its high rotation speed,it is difficult to install it in the experimental simulator and numerical model.Therefore,the turbine damping effects on the operation of the OWC air chamber are induced to predict its performance more accurately.Orifice plates are used as a substitute for the impulse turbine as it generates a similar pressure drop and power output;the experimental and numerical pressure drops and output powers are compared.A 3D numerical wave tank based on the two-phase VOF model is established using the commercial CFD code Fluent,which can predict air flow and pressure variations in the chamber and duct.Water surface elevations,air flow velocity and pressure variation inside the chamber with the orifice plate are studied numerically,and validated by the corresponding experimental data.The air chamber of the Yongsoo OWC pilot plant is used as the engineering project case.The operating performance of the air chamber installed with a 0.428D orifice plate as the substitute for the designed impulse turbine is computed and analyzed.It is found that the turbine damping effects will cause around 30%reduction in the peak values of the pneumatic energy output of the OWC air chamber in the resonant wave domain.
基金funded by the University of Lisbon,and CENTEC within a Ph.D.grantThis work contributes to the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering(CENTEC),which is financed by the Portuguese Foundation for Science and Technology under contract(Grant No.UIDB/UIDP/00134/2020).
文摘A review of multi-chamber oscillating water column(OWC)device designs is presented.Two significant variations of these devices are discussed,onshore OWC(OOWC)and a floating OWC(FOWC).The efficiency results of several theoretical studies based on low-and high-fidelity numerical models are presented and compared with the model scale results.Generally,low-fidelity numerical models are very fast to run,but their accuracy is limited compared with high-fidelity numerical models.Scaled model experiments usually give results much more accurate than numerical models,but they need adequate facilities and are very expensive.In the case of the OOWC,all models show a similar trend of total efficiency,but while the analytical model shows a maximum value of around 90%efficiency,the CFD model shows 60%,and the experiments only go up to 40%.The main reason is connected with the mathematical simplifications and assumptions that do not represent all the hydrodynamic and aerodynamic processes between the water,air,and structure.For the case of the FOWC,interestingly,the experimental results show a maximum efficiency of almost 100%,while the analytical model only predicts a maximum of 80%.The efficiency seems highly dependent on the heave motion resonance of the entire device,where the analytical model fails to predict this natural frequency.
基金supported by the JSPS Grant-in-Aid for Scientific Research(B)(Grant No.18H01646)the Collaborative Research Program of Research Institute for Applied Mechanics,Kyushu University(Grant No.2024S4-CD-1).
文摘Oscillating water column(OWC)based wave energy absorption devices are classic which have been widely used for harnessing ocean wave energy.This paper presents a numerical study on a projecting wall(PW)type OWC wave energy converter in regular waves.The computational fluid dynamics(CFD)modelling of a stationary floating PW-OWC model in a three-dimensional wave flume is achieved by the software Flow-3D.Numerical analyses are carried out based on CFD simulations and the linear potential flow solutions with modifications to account for turbine-induced damping.The present numerical solutions are validated against our previous experimental data.It is found that both the CFD and modified linear potential flow predictions are in reasonably good agreements with the experimental data in the first order results of OWC and air pressure responses.When the nonlinear responses are included in the result,the modified linear potential flow solution is found to slightly under-estimate the wave energy conversion performance at long wavelengths.Regarding the airflows above and below the chamber orifice,the CFD results suggest that they are almost unidirectional,oscillating in not only the base frequency but also subharmonic and ultraharmonic frequencies.The evolution of the OWC responses during an entire period and the phase analysis based on CFD simulations are presented.The phase results provide the crucial evidence to the reasonability of the physics-based modification of the potential flow model in modelling of OWCs.The present results and analysis are expected to be beneficial to the understanding on the physical mechanism of OWCs and the design of phase control strategies.
文摘Sea wave energy generators or converters(WECs)have the potential to become a viable technology for clean,renewable energy production.Among the WEC technologies,the oscillating water columns(OWCs)are the most common WEC devices studied.These have been studied and developed over many years.Multi-chamber oscillating water columns(MC-OWC)have the potential to have a higher energy conversion when extracting energy in mixed sea states than single-chamber devices.In the work reported in this paper,physical experiments are carried under regular wave conditions to test the wave power extraction of a fixed MC-OWC small-scale model.The Power Take-Off(PTO)of the device is simulated using orifice plates.The flow characteristics through these orifices are pre-calibrated such that the extracted power can be obtained only using the pressure measurement.Wave condition effects on the damping of the PTO of the device power extraction are addressed.The test results illustrate that the PTO system damping is critical and affects device performance.
文摘振荡水柱(Oscillation Water Column,OWC)是近年来发展较快的波浪能采集技术,该装置主要由箱体、振荡水柱和压缩空气柱组成,而波浪在气室内产生的压强对能量转换效率等起到决定作用。结合三维侧向开口的振荡水柱波能转换装置,基于线性波理论,采用三维Green函数法建立了气室内水气动力学性能的空气压强理论计算模型,利用多维切比雪夫(Chebyshev)多项式求解,计算结果精度高,能够准确表达波浪和结构设计参数对气室内压强影响。依据理论计算模型分析了波浪周期、波长、吃水深度、入射波幅等参数对气室内压强作用。
文摘设计一种带收缩水道的沉箱防波堤和OWC(Oscillating Water Column)波能发电装置相结合的复合结构形式,开展物理模型试验研究。通过改变水道结构形式与OWC气室参数,并分析实验数据,探讨水道形式、入射波要素和OWC气室形状参数等对该复合结构工作性能的影响,采用气室内波幅放大系数、气室顶部空气点压力和防波堤前波浪反射率作为考察参量。
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51579231,51879253)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA13040202)
文摘Wave tank tests were carried out to evaluate the total efficiency of a floating OWC Pentagonal Backward Bent Duct Buoy (PBBDB). Two kinds of turbine generators were used in tests. The incident wave power, pneumatic power and electricity were measured. The test results show that the primary efficiency can reach up to 185.98% in regular waves and 85.86% in irregular waves. The total efficiency from wave to wire with Wells turbine-generator set is 33.43% in regular waves and 15.82% in irregular waves. The peak total efficiency of the PBBDB with check valves equipped with the impulse turbine-generator set is 41.68% in regular waves and 27.10% in irregular waves. The efficiency of the turbine-generator set is about 30% in the tests. Obviously, the total efficiency can be further improved with the increasing of turbine efficiency.
基金the author thanks the National Centre for Maritime En-gineering and Hydrodynamics,Australian Maritime College,University of Tasmania,Australia for the financial support of his PhD.
文摘In this paper,hydrodynamic wave loads on an offshore stationary-floating oscillating water column(OWC)are investigated via a 2D and 3D computational fluid dynamics(CFD)modeling based on the RANS equations and the VOF surface capturing scheme.The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge.Following the validation stage,the numerical model is modified to consider the pneumatic damping effect,and an extensive campaign of numerical tests is carried out to study the wave-OWC interactions for different wave periods,wave heights and pneumatic damping factors.It is found that the horizontal wave force is usually larger than the vertical one.Also,there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency,whereas the pneumatic damping has a little effect on the horizontal force.Additionally,simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening.Furthermore,3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads,respectively.
文摘A new oscillating water column (OWC) design is proposed in this study to incorporate a simpler Savonius type turbine. Conventional OWC devices employ a bi-directional turbine such as a Wells or an Impulse turbine to extract energy from the air. The disadvantages of the Wells turbine include its inability to self start and stalling. The Savonius turbine is much cheaper and is an effective option at low Reynolds numbers. In the current rectangular OWC device, unlike the circular OWC, the width of entry of the capture chamber can be increased without being influenced by the diameter at the turbine section. To improve its primary capture efficiency, the front and rear walls of the OWC are inclined to minimize reflection. The Savonius rotor characteristics are studied with respect to the change in frequency of the incoming waves. The rotor rpm is sensitive to wave period and primary conversion efficiency while changes in depth only affect the rotor rpm at lower frequencies. The Savonius rotor shows promising results and can be incorporated into large scale OWC devices to reduce costs of the turbine component of the system.
文摘This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new way to produce electric power automatically for large light ships.
文摘Wave energy is a renewable source with significant amount in relation to the global demand. A good concept of a device applied to extract this type of energy is the onshore oscillating water column wave energy converter(OWC-WEC). This study shows a numerical analysis of the diameter determination of two types of turbines, Wells and Impulse, installed in an onshore OWC device subjected to a hypothetical sea state. Commercial software FLUENT?,which is based on RANS-VoF(Reynolds-Averaged Navier-Stokes equations and Volume of Fluid technique), is employed. A methodology that imposes air pressure on the chamber, considering the air compressibility effect, is used. The mathematical domain consists of a 10 m deep flume with a 10 m long and 10 m wide OWC chamber at its end(geometry is similar to that of the Pico's plant installed in Azores islands, Portugal). On the top of the chamber, a turbine works with air exhalation and inhalation induced by the water free surface which oscillates due to the incident wave. The hypothetical sea state, represented by a group of regular waves with periods from 6 to 12 s and heights from 1.00 to 2.00 m(each wave with an occurrence frequency), is considered to show the potential of the presented methodology. Maximum efficiency(relation between the average output and incident wave powers) of46% was obtained by using a Wells turbine with the diameter of 2.25 m, whereas the efficiency was 44% by an Impulse turbine with the diameter of 1.70 m.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51879253 and U20A20106)。
文摘Freely movable wave energy converters(WECs) will greatly improve their adaptability to the marine environment.In this paper, a dual-mode oscillating water column(OWC) WEC with potential sailing capability is proposed. By opening and closing a gate on the side facing the waves, the WEC converts wave energy in the vertical duct(called VD mode) with low sailing resistance or in the backward bend duct(called BBD mode) with high sailing resistance.A small model and a medium model were designed and manufactured. The capture width ratio(CWR) of the small model in the two modes was experimentally studied. The CWR under bidirectional airflow and conversion characteristics under unidirectional airflow of the medium model in the BBD mode were obtained. Tests of the small model show that the peak CWR is 145.2% under regular waves and 90.1% under random waves in BBD mode, and in VD mode the peak CWR is about 60% of that in the BBD mode. Tests of the medium model show that the peak CWR is 228.96% under regular waves, the maximum wave-to-battery efficiency is 63.36% under regular waves and 30.17%under random waves, respectively.
文摘振荡水柱(oscillating water column,OWC)波浪发电装置因其具有结构简单、性能可靠等优点而成为目前世界上最为成功的波浪能转换装置。为促进中国对波浪能的开发,本研究中对国内外OWC波浪能发电装置的研究和开发应用进行了综述,尤其是近年来所提出的OWC波浪发电装置与防波堤相结合的新型式——OWC型防波堤,针对中国在OWC研发上存在的不足提出相应对策,并对OWC的未来发展趋势进行了展望,因地制宜地开发海岛、海洋平台等区域的波浪能将成为中国在该领域未来的研发方向。