It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the ...It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the spilling occurs, the vibration of the pipe would aggravate spill situation and even result in crack of the pipe. The consequence will be more severe when the fluid inside is compressible. To prevent the detriment of the spilling model is developed by assuming the leakages as orifices or nozzles and a 2-D vertical simply supported pipe is selected to analyze the phenomena of the oscillation. Combining these two models, the oscillation model for the pipe with leakage is set up and the spilling effect is analyzed by numerical method. The amplitude of the pipe oscillation and the normal stress enlarge as the internal velocity increased, while the shear stress changes very little.展开更多
This paper is a brief summarization of research achievements about enhanced heat transfer of a fluid oscillated within pipes. Analytical solutions, numerical results and dimensional analyses are summarized and compare...This paper is a brief summarization of research achievements about enhanced heat transfer of a fluid oscillated within pipes. Analytical solutions, numerical results and dimensional analyses are summarized and compared with experimental data in the paper. Also, the mechanism of enhanced heat transfer is discussed. It is considered that increase in the effective area of heat conduction and increase in temperature gradient are the main reasons of enhanced heat transfer.展开更多
Oscillating water column wave energy converter is a power generation device in which ocean waves excite the oscillation of the water surface in an air chamber, which generates fluctuations in air pressure and rotate a...Oscillating water column wave energy converter is a power generation device in which ocean waves excite the oscillation of the water surface in an air chamber, which generates fluctuations in air pressure and rotate air turbine generator(s). The oscillation of the fluid in the air chamber is a fluid oscillation phenomenon with a natural period, similar to fluid oscillation in a container such as sloshing. Previous research has shown that for an oscillating water column with a single air chamber submerged in water, the oscillation characteristics can be modeled as a one-degree-of-freedom oscillation system that takes only a single oscillation mode into account. However, a double-slit breakwater integrated oscillating water column wave energy converter using two water columns of the breakwater separated by slit walls, has been verified to have two resonance periods. In this study, the free oscillating motion of the oscillating water column wave energy converter using the double-slit breakwater is modeled by modal superposition method including the first-order and second-order modes of vertical motion of the two water surfaces. The result from the simulation is similar to the result of the free vibration experiment.展开更多
A numerical model and a solution method to analyze the labyrinth seal now induced vibration by Oscillating Fluid Mechanics Method (OFMM) are presented in this paper, including the basic equations and solution procedur...A numerical model and a solution method to analyze the labyrinth seal now induced vibration by Oscillating Fluid Mechanics Method (OFMM) are presented in this paper, including the basic equations and solution procedure to determine the oscillating velocity, pressure and the dynamic characteristic coefficients of Labyrinth seal such as the stiffness coefficients and damping coefficients. The results show that this method has the advantages of both less time cousuming and high accuracy. In addition,it can be applied to the field diagnosis of the vibration of the axis of turbomachinery system.展开更多
As a class of newly emerging functional material, Gallium based liquid metals have attracted increasing attentions in many fields, such as chip cooling, printed electronics and microfiuidics, etc. Particularly, the mo...As a class of newly emerging functional material, Gallium based liquid metals have attracted increasing attentions in many fields, such as chip cooling, printed electronics and microfiuidics, etc. Particularly, the motion control of liquid metal droplet has been recently tried for its importance in microelectromechanical system (MEMS), microfluidics and potential use in micro-machine or reconfigurable soft robot. This paper is dedicated to explore the motion behavior of liquid metal droplet under AC electric field. The quickly induced oscillation phenomena of liquid metal droplet and surrounding electrolyte solution were observed and the major factors to influence such behaviors are theoretically interpreted and experimentally investigated, including the size of the liquid metal droplet, electrode voltage, electrolyte solution concentration and AC signal frequency etc. Moreover, some typical features to distinguish AC filed actuation with DC field are observed, such as intensive fluid waving induced by the resonance stimulation, and the efficient inhibition of solution electrolysis. Finally, two important applications of adopting AC induced surface oscillation of liquid metal droplet to develop solution mixer as well as fluidic pump were demonstrated which successfully avoid gas generation inside electrolyte environment. The bulk oscillation effects of liquid metal as clarified here could be very useful in a variety of areas such as solution disturbance and mixing, and fluid oscillator or pump etc.展开更多
The propagation of oscillating disturbances with various frequencies in multi stage turbine passages in a rocket is analyzed using the oscillating fluid mechanics theorem and the parametric polynomial method. The r...The propagation of oscillating disturbances with various frequencies in multi stage turbine passages in a rocket is analyzed using the oscillating fluid mechanics theorem and the parametric polynomial method. The results show that oscillating disturbances can be rapidly dissipated when the disturbance occurs at the inlet except for very high frequency oscillation such as 50 kHz. Dangerous low frequency oscillations occur at the outlet. The effects of the flow parameter variations on the oscillating disturbance propagation are also studied. The analysis will facilitate safe operation of the whole rocket system.展开更多
基金the support of Thousand Talents Programthe National Natural Science Foundation of China(51479114)special fund for Marine Renewable Energy Project(GHME2014ZC01)
文摘It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the spilling occurs, the vibration of the pipe would aggravate spill situation and even result in crack of the pipe. The consequence will be more severe when the fluid inside is compressible. To prevent the detriment of the spilling model is developed by assuming the leakages as orifices or nozzles and a 2-D vertical simply supported pipe is selected to analyze the phenomena of the oscillation. Combining these two models, the oscillation model for the pipe with leakage is set up and the spilling effect is analyzed by numerical method. The amplitude of the pipe oscillation and the normal stress enlarge as the internal velocity increased, while the shear stress changes very little.
文摘This paper is a brief summarization of research achievements about enhanced heat transfer of a fluid oscillated within pipes. Analytical solutions, numerical results and dimensional analyses are summarized and compared with experimental data in the paper. Also, the mechanism of enhanced heat transfer is discussed. It is considered that increase in the effective area of heat conduction and increase in temperature gradient are the main reasons of enhanced heat transfer.
文摘Oscillating water column wave energy converter is a power generation device in which ocean waves excite the oscillation of the water surface in an air chamber, which generates fluctuations in air pressure and rotate air turbine generator(s). The oscillation of the fluid in the air chamber is a fluid oscillation phenomenon with a natural period, similar to fluid oscillation in a container such as sloshing. Previous research has shown that for an oscillating water column with a single air chamber submerged in water, the oscillation characteristics can be modeled as a one-degree-of-freedom oscillation system that takes only a single oscillation mode into account. However, a double-slit breakwater integrated oscillating water column wave energy converter using two water columns of the breakwater separated by slit walls, has been verified to have two resonance periods. In this study, the free oscillating motion of the oscillating water column wave energy converter using the double-slit breakwater is modeled by modal superposition method including the first-order and second-order modes of vertical motion of the two water surfaces. The result from the simulation is similar to the result of the free vibration experiment.
文摘A numerical model and a solution method to analyze the labyrinth seal now induced vibration by Oscillating Fluid Mechanics Method (OFMM) are presented in this paper, including the basic equations and solution procedure to determine the oscillating velocity, pressure and the dynamic characteristic coefficients of Labyrinth seal such as the stiffness coefficients and damping coefficients. The results show that this method has the advantages of both less time cousuming and high accuracy. In addition,it can be applied to the field diagnosis of the vibration of the axis of turbomachinery system.
基金partially supported by the Dean’s Research Funding of the Chinese Academy of Sciences and Beijing Municipal Science and Technology Project(Grant No.Z141100000514005)
文摘As a class of newly emerging functional material, Gallium based liquid metals have attracted increasing attentions in many fields, such as chip cooling, printed electronics and microfiuidics, etc. Particularly, the motion control of liquid metal droplet has been recently tried for its importance in microelectromechanical system (MEMS), microfluidics and potential use in micro-machine or reconfigurable soft robot. This paper is dedicated to explore the motion behavior of liquid metal droplet under AC electric field. The quickly induced oscillation phenomena of liquid metal droplet and surrounding electrolyte solution were observed and the major factors to influence such behaviors are theoretically interpreted and experimentally investigated, including the size of the liquid metal droplet, electrode voltage, electrolyte solution concentration and AC signal frequency etc. Moreover, some typical features to distinguish AC filed actuation with DC field are observed, such as intensive fluid waving induced by the resonance stimulation, and the efficient inhibition of solution electrolysis. Finally, two important applications of adopting AC induced surface oscillation of liquid metal droplet to develop solution mixer as well as fluidic pump were demonstrated which successfully avoid gas generation inside electrolyte environment. The bulk oscillation effects of liquid metal as clarified here could be very useful in a variety of areas such as solution disturbance and mixing, and fluid oscillator or pump etc.
基金Supported by the State Key Developments Plan Project of China( No.G19990 2 2 3 0 4 )
文摘The propagation of oscillating disturbances with various frequencies in multi stage turbine passages in a rocket is analyzed using the oscillating fluid mechanics theorem and the parametric polynomial method. The results show that oscillating disturbances can be rapidly dissipated when the disturbance occurs at the inlet except for very high frequency oscillation such as 50 kHz. Dangerous low frequency oscillations occur at the outlet. The effects of the flow parameter variations on the oscillating disturbance propagation are also studied. The analysis will facilitate safe operation of the whole rocket system.