A new analytical method is proposed for the determination of heroin based on a sequential perturbation caused by trace amounts of heroin in the Cu(Ⅱ)-catalyzed oscillating reaction between hydrogen peroxide and sodiu...A new analytical method is proposed for the determination of heroin based on a sequential perturbation caused by trace amounts of heroin in the Cu(Ⅱ)-catalyzed oscillating reaction between hydrogen peroxide and sodium thiocyanate in an alkaline medium with the aid of a continuous-flow stirred tank reactor(CSTR). The method relies on the linear relationship between the change in oscillation period of the system and the concentration of heroin, with a detecting limit of 4.0×10^(-7) mol/L. The calibration curve fits a linear equation very well when the concentration of heroin is in the range of 2.0×10^(-6)_1.2×10^(-5) mol/L(r=0.9971). This method features good precision(RSD=0.98%). The influences of temperature, injection point, flow rate and reaction variables on the oscillation period were investigated in detail and a possible mechanism of the performance of heroin in the Cu(Ⅱ)-catalyzed oscillating reaction system is also discussed. The proposed method opens a new avenue for the determination of heroin.展开更多
A novel oscillating chemical reaction using ninhydrin as a single organic substrate was represented in this paper. It distinguished from the classically catalyzed BZ oscillating chemical reaction due to there was no a...A novel oscillating chemical reaction using ninhydrin as a single organic substrate was represented in this paper. It distinguished from the classically catalyzed BZ oscillating chemical reaction due to there was no active methene (CH2=) and/or enol structure in the ninhydrin molecule, which served as single organic substrate. This suggested that the substrates used in catalyzed BZ reaction were not always the organic compounds containing active methene (CH2=) and/or enol structure and bromination process in this kind of catalyzed chemical oscillating reaction was not also necessary.展开更多
1-D quantum calculations of reaction probabilities have been carried out for the col- linear reaction Cl+HCl (v≤3)→ClH (v'≤3)+Cl using hyperspherical coordinates. An LEPS po- tential energy surface with a shallow ...1-D quantum calculations of reaction probabilities have been carried out for the col- linear reaction Cl+HCl (v≤3)→ClH (v'≤3)+Cl using hyperspherical coordinates. An LEPS po- tential energy surface with a shallow well depth of -3.22 KJ/mol has been used in the calculations. The state-to-state reaction probabilities have been calculated. According to the results obtained we found that the diagonal (v=v') reaction probabilities dominate over the off-diagonal (vv') reaction probabilities and the largest off-diagonal reaction probabilities are smaller than 0.1. The reaction probabilities show oscillation as a function of energy. Dynamic resonances strengthen for the potential energy surface with a well.展开更多
基金Supported by the Project of International Cooperation between China and U kraine(No.0 4 3- 0 5 ) and the Project ofKJCXGC- 0 1Northwest Norm al U niversityChina
文摘A new analytical method is proposed for the determination of heroin based on a sequential perturbation caused by trace amounts of heroin in the Cu(Ⅱ)-catalyzed oscillating reaction between hydrogen peroxide and sodium thiocyanate in an alkaline medium with the aid of a continuous-flow stirred tank reactor(CSTR). The method relies on the linear relationship between the change in oscillation period of the system and the concentration of heroin, with a detecting limit of 4.0×10^(-7) mol/L. The calibration curve fits a linear equation very well when the concentration of heroin is in the range of 2.0×10^(-6)_1.2×10^(-5) mol/L(r=0.9971). This method features good precision(RSD=0.98%). The influences of temperature, injection point, flow rate and reaction variables on the oscillation period were investigated in detail and a possible mechanism of the performance of heroin in the Cu(Ⅱ)-catalyzed oscillating reaction system is also discussed. The proposed method opens a new avenue for the determination of heroin.
文摘A novel oscillating chemical reaction using ninhydrin as a single organic substrate was represented in this paper. It distinguished from the classically catalyzed BZ oscillating chemical reaction due to there was no active methene (CH2=) and/or enol structure in the ninhydrin molecule, which served as single organic substrate. This suggested that the substrates used in catalyzed BZ reaction were not always the organic compounds containing active methene (CH2=) and/or enol structure and bromination process in this kind of catalyzed chemical oscillating reaction was not also necessary.
文摘1-D quantum calculations of reaction probabilities have been carried out for the col- linear reaction Cl+HCl (v≤3)→ClH (v'≤3)+Cl using hyperspherical coordinates. An LEPS po- tential energy surface with a shallow well depth of -3.22 KJ/mol has been used in the calculations. The state-to-state reaction probabilities have been calculated. According to the results obtained we found that the diagonal (v=v') reaction probabilities dominate over the off-diagonal (vv') reaction probabilities and the largest off-diagonal reaction probabilities are smaller than 0.1. The reaction probabilities show oscillation as a function of energy. Dynamic resonances strengthen for the potential energy surface with a well.