[ Objective] The purpose was to discuss drought resistance mechanism of Chenopodium album L. and supply theoretical basis and practical guidance for artificial cultivation and popularization of C. album. [ Method] C. ...[ Objective] The purpose was to discuss drought resistance mechanism of Chenopodium album L. and supply theoretical basis and practical guidance for artificial cultivation and popularization of C. album. [ Method] C. album seedlings grown to 6th leaf stage were conducted osmotic stress treatment with PEG6000 osmotic whose concentration was set up as 0, 5%, 10% and 20% and the various physiological indices of the 3rd -5th function leaves in upper plant were determined after being treated for 0, 1,3, 5, 7 and 9 d. [ Result] Under osmotic stress with 5% PGE, the relative water content (RWC) of C. album reduced less. Under osmotic stress with 10%, the RWC in seedling leaves of C. album decreased to 62% on the fifth day and the leaves began to wither. Under osmotic stress with 20%, the RWC in seedling leaves of C. album decreased to 61.9% on the third day and the leaves appeared withering, and the RWC decreased to 48.6% on the 7th day and the leaves were dry and yellow. Proline contents in seedling leaves of C. album under osmotic stress with 5%, 10% and 20% PEG were 7.64, 10.9 and 29.4 times of CK on the 7th day. [ Conclusion] C. album hed some adaptability to moderate osmotic stress, but the PEG osmotic stress with high concentration and long time might lead to severe damage on C. album.展开更多
Ramie (Boehmeria nivea L.) is one of the most important fiber crops and biomass materials. However, previous studies showed that ramie presented a very low nitrogen agronomy efficiency (NAE, 23.2%~27.8%) in traditiona...Ramie (Boehmeria nivea L.) is one of the most important fiber crops and biomass materials. However, previous studies showed that ramie presented a very low nitrogen agronomy efficiency (NAE, 23.2%~27.8%) in traditional farming, and the nitrogen fertilizer was applied excessively in ramie field. Plant osmotic adjustment (OA) responses to environmental stresses positively and exhibits improvements in plant tolerance. Whereas results varied due to the complexity of plant-environment interactions and lack of insights of specific species. In order to improve ramie production through osmoregulation, our current study investigated the role of nitrogen application and osmotic adjustment in improving the growth and yield in two varieties of ramie (H2000-03 and Ceheng Jiama) with contrasting nitrogen use efficiency (NUE) grown at 5 different N rates including N0, N6, N9, N12 and N15;0, 6, 9, 12 and 15 mmol/L N, respectively. The results showed that ramie adapted to different nitrogen rates through OA and significant differences of osmolyte content between varieties only presented at the particular growth stage. Obvious inflexion of yield, osmolyte content involving proline, soluble protein (SP), soluble sugar (SS) and malonaldehyde (MDA);nitrogen sensitive index (NSI) and comprehensive evaluation (D) in both varieties were observed. Our results recommended that the overall lifting of OA at a lower N level and at the proper growth stage would be a reasonable approach for improving ramie NUE.展开更多
Drought stress negatively impacts growth and physiological processes in plants.The foliar application of glycine betaine(GB)is an effective and low-cost approach to improve the drought tolerance of trees.This study ex...Drought stress negatively impacts growth and physiological processes in plants.The foliar application of glycine betaine(GB)is an effective and low-cost approach to improve the drought tolerance of trees.This study examined the effect of exogenously applied GB on the cell membrane permeability,osmotic adjustment,and antioxidant enzyme activities of Phoebe hunanensis Hand.-Mazz under drought stress.Two levels(0 and 800 mL)of water irrigation were tested under different applied GB concentrations(0,50,100,and 200 mM).Drought stress decreased the relative water content by 58.5%while increased the electric conductivity,malondialdehyde,proline,soluble proteins,soluble sugars,and antioxidant enzyme activities(superoxide dismutase,catalase,peroxidase)by up to 62.9%,42.4%,87.0%,19.1%,60.5%,68.3%,71.7%,and 83.8%,respectively,on the 25^(th) day.The foliar application of GB,especially at 100 mM,increased the relative water content of P.hunanensis leaves under drought stress.The concentration of GB from 50 to 100 mM effectively alleviated the improvement of cell membrane permeability and inhibited the accumulation of membrane lipid peroxidation products.Under drought stress,the concentrations of proline,soluble proteins,and soluble sugars in the leaves of P.hunanensis increased as the applied GB concentration was increased and the water stress time was prolonged.Exogenously applied GB decreased oxidative stress and improved antioxidant enzyme activities as compared with treatments without GB application.Furthermore,the physiological and biochemical indexes of P.hunanensis showed a certain dose effect on exogenous GB concentration.These results suggest that GB helps maintain the drought tolerance of P.hunanensis.展开更多
Two varieties of winter wheat,Bei Nong 2(B. N. 2)and Jing 411(J. 411),were selected for osmotic adjustment study. At wheat growing stages,from recovery period to mature period,leaf relative water content(LRWC) ,water ...Two varieties of winter wheat,Bei Nong 2(B. N. 2)and Jing 411(J. 411),were selected for osmotic adjustment study. At wheat growing stages,from recovery period to mature period,leaf relative water content(LRWC) ,water potential(LWP)and saturated osmotic potential (LSOP) were positively correlated to soil relative water content (SRWC) and decreased as SRWC descended at each growth stage,and the decreasing range exhibited B. N. 2【J. 411. The turgor pressure(TP)of both the varieties decreased less than LRWC and LWP. It was shown that both varieties had a osmotic adjustment ability(OAA) ,and the decreasing range presented B. N. 2【J. 411. Both the varieties had a TP tubercle in TP vs SRWC graph at heading and filling stages,and their OAA was the strongest at these two stages.展开更多
Beta vulgaris genus comprises wild and cultivated subspecies. The “maritima” subspecies is formed by wild or weedy accessions, well adapted to low-water potential environments;it was previously shown that B. vulgari...Beta vulgaris genus comprises wild and cultivated subspecies. The “maritima” subspecies is formed by wild or weedy accessions, well adapted to low-water potential environments;it was previously shown that B. vulgaris ssp. maritima has mechanisms of osmotic adjustment more effective than the cultivated B. vulgaris ssp. vulgaris. The response to a progressive lowering of soil potential was compared in two Beta accessions, a cultivated and a wild one. Throughout the 4-months experiment under rain shelters, osmotic potential and relative water content were measured and total RNA was extracted to test the expression of six target genes known in sugar beet or in other plants to be modulated by water shortage. The mild occurrence of drought was paralleled by slow increase in transcription for sucrose synthase 1 and choline monoxygenase, in a way that was in some cases accession-dependent, e.g. the gene for choline monoxygenase was found to be up-regulated at the later stages of growth in stressed plants compared to control ones, and showed a higher constitutive transcription in sea beet compared to sugar beet. Transcription factor DREB2Aalso was slowly induced during the growth season and upon onset of water shortage, and this induction was stronger in sea beet than in sugar beet. In control plants, the transcription of all genes tested except DREB2Awere significantly higher in maritima accession compared to vulgaris one.展开更多
Salinity is a major stress that adversely affects growth and productivity in plants. There are species that tolerate this stresswithin the genus Atriplex. Four species, A. lampa, A. crenatifolia, A. nummularia and A. ...Salinity is a major stress that adversely affects growth and productivity in plants. There are species that tolerate this stresswithin the genus Atriplex. Four species, A. lampa, A. crenatifolia, A. nummularia and A. argentina were compared for their ionaccumulation and water relations under saline conditions. A greenhouse study was conducted by irrigating the four species with NaCIsolutions at concentrations 0%, 1%, 2% and 4% starting when plants were six months old. Plants were harvested 45 d after startingthe salinity treatments and analyzed for their ion contents. In the four Atriplex species, Na^+ and Cl^- contents in plants increased, whileCa^2+ and Mg^2+ decreased with the increase of salinity in the irrigation solution. The results suggested that A. argentina and A.nummularia were able to maintain a higher leaf relative water content (RWC) at low leaf water potential, which was associated witha greater capacity of osmotic adjustment. A. lampa showed lower ion accumulation and minor osmotic adjustment than the otherspecies. It can be concluded that the accumulation of ions favors the lower osmotic potential and contributes to osmotic adjustment inthese halophytes.展开更多
In this paper, firstly, we construct the regional industrial sustainable development indicator system which are consist with resource, environment, technology and industrial economy efficiency levels and 16 indicators...In this paper, firstly, we construct the regional industrial sustainable development indicator system which are consist with resource, environment, technology and industrial economy efficiency levels and 16 indicators from the perspective of “two-oriented society”;Secondly, using the method of AHP to determine the weight of each indicator and evaluate the ability of industrial sustainable development of 30 regions in China;Finally, according to the results, we used the method of cluster analysis to put the regions into classification and then author put forward certain suggestions to improve the ability of industrial sustainable development of each region.展开更多
基金Supported by the Natural Science Foundation of Education Department of Jiangsu Province(02KJD18007)the Key Laboratory Program of Bio-re-sources of Jiangsu Province(KJS03042)the Key Program of Natural Science Foundation of Xuzhou Normal University(06XLA11)~~
文摘[ Objective] The purpose was to discuss drought resistance mechanism of Chenopodium album L. and supply theoretical basis and practical guidance for artificial cultivation and popularization of C. album. [ Method] C. album seedlings grown to 6th leaf stage were conducted osmotic stress treatment with PEG6000 osmotic whose concentration was set up as 0, 5%, 10% and 20% and the various physiological indices of the 3rd -5th function leaves in upper plant were determined after being treated for 0, 1,3, 5, 7 and 9 d. [ Result] Under osmotic stress with 5% PGE, the relative water content (RWC) of C. album reduced less. Under osmotic stress with 10%, the RWC in seedling leaves of C. album decreased to 62% on the fifth day and the leaves began to wither. Under osmotic stress with 20%, the RWC in seedling leaves of C. album decreased to 61.9% on the third day and the leaves appeared withering, and the RWC decreased to 48.6% on the 7th day and the leaves were dry and yellow. Proline contents in seedling leaves of C. album under osmotic stress with 5%, 10% and 20% PEG were 7.64, 10.9 and 29.4 times of CK on the 7th day. [ Conclusion] C. album hed some adaptability to moderate osmotic stress, but the PEG osmotic stress with high concentration and long time might lead to severe damage on C. album.
文摘Ramie (Boehmeria nivea L.) is one of the most important fiber crops and biomass materials. However, previous studies showed that ramie presented a very low nitrogen agronomy efficiency (NAE, 23.2%~27.8%) in traditional farming, and the nitrogen fertilizer was applied excessively in ramie field. Plant osmotic adjustment (OA) responses to environmental stresses positively and exhibits improvements in plant tolerance. Whereas results varied due to the complexity of plant-environment interactions and lack of insights of specific species. In order to improve ramie production through osmoregulation, our current study investigated the role of nitrogen application and osmotic adjustment in improving the growth and yield in two varieties of ramie (H2000-03 and Ceheng Jiama) with contrasting nitrogen use efficiency (NUE) grown at 5 different N rates including N0, N6, N9, N12 and N15;0, 6, 9, 12 and 15 mmol/L N, respectively. The results showed that ramie adapted to different nitrogen rates through OA and significant differences of osmolyte content between varieties only presented at the particular growth stage. Obvious inflexion of yield, osmolyte content involving proline, soluble protein (SP), soluble sugar (SS) and malonaldehyde (MDA);nitrogen sensitive index (NSI) and comprehensive evaluation (D) in both varieties were observed. Our results recommended that the overall lifting of OA at a lower N level and at the proper growth stage would be a reasonable approach for improving ramie NUE.
基金This work was supported by the Science and Technology Research Project of Hubei Provincial Department of Education(Q20191309)the Engineering Research Center of Ecology and Agricultural Use of Wetland(Ministry of Education,KF2018113)Shuangzhu Forest Farm in Zhuxi County(2020H21003).
文摘Drought stress negatively impacts growth and physiological processes in plants.The foliar application of glycine betaine(GB)is an effective and low-cost approach to improve the drought tolerance of trees.This study examined the effect of exogenously applied GB on the cell membrane permeability,osmotic adjustment,and antioxidant enzyme activities of Phoebe hunanensis Hand.-Mazz under drought stress.Two levels(0 and 800 mL)of water irrigation were tested under different applied GB concentrations(0,50,100,and 200 mM).Drought stress decreased the relative water content by 58.5%while increased the electric conductivity,malondialdehyde,proline,soluble proteins,soluble sugars,and antioxidant enzyme activities(superoxide dismutase,catalase,peroxidase)by up to 62.9%,42.4%,87.0%,19.1%,60.5%,68.3%,71.7%,and 83.8%,respectively,on the 25^(th) day.The foliar application of GB,especially at 100 mM,increased the relative water content of P.hunanensis leaves under drought stress.The concentration of GB from 50 to 100 mM effectively alleviated the improvement of cell membrane permeability and inhibited the accumulation of membrane lipid peroxidation products.Under drought stress,the concentrations of proline,soluble proteins,and soluble sugars in the leaves of P.hunanensis increased as the applied GB concentration was increased and the water stress time was prolonged.Exogenously applied GB decreased oxidative stress and improved antioxidant enzyme activities as compared with treatments without GB application.Furthermore,the physiological and biochemical indexes of P.hunanensis showed a certain dose effect on exogenous GB concentration.These results suggest that GB helps maintain the drought tolerance of P.hunanensis.
文摘Two varieties of winter wheat,Bei Nong 2(B. N. 2)and Jing 411(J. 411),were selected for osmotic adjustment study. At wheat growing stages,from recovery period to mature period,leaf relative water content(LRWC) ,water potential(LWP)and saturated osmotic potential (LSOP) were positively correlated to soil relative water content (SRWC) and decreased as SRWC descended at each growth stage,and the decreasing range exhibited B. N. 2【J. 411. The turgor pressure(TP)of both the varieties decreased less than LRWC and LWP. It was shown that both varieties had a osmotic adjustment ability(OAA) ,and the decreasing range presented B. N. 2【J. 411. Both the varieties had a TP tubercle in TP vs SRWC graph at heading and filling stages,and their OAA was the strongest at these two stages.
文摘Beta vulgaris genus comprises wild and cultivated subspecies. The “maritima” subspecies is formed by wild or weedy accessions, well adapted to low-water potential environments;it was previously shown that B. vulgaris ssp. maritima has mechanisms of osmotic adjustment more effective than the cultivated B. vulgaris ssp. vulgaris. The response to a progressive lowering of soil potential was compared in two Beta accessions, a cultivated and a wild one. Throughout the 4-months experiment under rain shelters, osmotic potential and relative water content were measured and total RNA was extracted to test the expression of six target genes known in sugar beet or in other plants to be modulated by water shortage. The mild occurrence of drought was paralleled by slow increase in transcription for sucrose synthase 1 and choline monoxygenase, in a way that was in some cases accession-dependent, e.g. the gene for choline monoxygenase was found to be up-regulated at the later stages of growth in stressed plants compared to control ones, and showed a higher constitutive transcription in sea beet compared to sugar beet. Transcription factor DREB2Aalso was slowly induced during the growth season and upon onset of water shortage, and this induction was stronger in sea beet than in sugar beet. In control plants, the transcription of all genes tested except DREB2Awere significantly higher in maritima accession compared to vulgaris one.
文摘Salinity is a major stress that adversely affects growth and productivity in plants. There are species that tolerate this stresswithin the genus Atriplex. Four species, A. lampa, A. crenatifolia, A. nummularia and A. argentina were compared for their ionaccumulation and water relations under saline conditions. A greenhouse study was conducted by irrigating the four species with NaCIsolutions at concentrations 0%, 1%, 2% and 4% starting when plants were six months old. Plants were harvested 45 d after startingthe salinity treatments and analyzed for their ion contents. In the four Atriplex species, Na^+ and Cl^- contents in plants increased, whileCa^2+ and Mg^2+ decreased with the increase of salinity in the irrigation solution. The results suggested that A. argentina and A.nummularia were able to maintain a higher leaf relative water content (RWC) at low leaf water potential, which was associated witha greater capacity of osmotic adjustment. A. lampa showed lower ion accumulation and minor osmotic adjustment than the otherspecies. It can be concluded that the accumulation of ions favors the lower osmotic potential and contributes to osmotic adjustment inthese halophytes.
文摘In this paper, firstly, we construct the regional industrial sustainable development indicator system which are consist with resource, environment, technology and industrial economy efficiency levels and 16 indicators from the perspective of “two-oriented society”;Secondly, using the method of AHP to determine the weight of each indicator and evaluate the ability of industrial sustainable development of 30 regions in China;Finally, according to the results, we used the method of cluster analysis to put the regions into classification and then author put forward certain suggestions to improve the ability of industrial sustainable development of each region.