Plant mitochondrial phosphate transporters regulate phosphate transport and ATP synthesis. Determining whether they function in abiotic stress response process would shed light on their response to salt stress. We use...Plant mitochondrial phosphate transporters regulate phosphate transport and ATP synthesis. Determining whether they function in abiotic stress response process would shed light on their response to salt stress. We used the CRISPR/Cas9 gene-editing system to mutagenize two mitochondrial phosphate transporters, OsMPT3;1 and OsMPT3;2, to investigate their regulatory roles under salt stress. Two cas9(CRISPR-associated protein9)-free homozygous mutants, mpt33 and mpt30, were confirmed to be stable. Both OsMPT3;1 and OsMPT3;2 were markedly induced by salt stress, and their mutagenesis strongly inhibited growth and development, especially under salt stress. Mutagenesis sharply reduced the accumulation of ATP, phosphate, calcium, soluble sugar, and proline and increased osmotic potential, malondialdehyde, and Na^+ /K^+ ratio under salt stress. Both mutants demonstrate normal growth and development in the presence of ATP, revealing high sensitivity to exogenous ATP under salt stress. The mutants showed lowered rates of Na^+ efflux but also of K^+ and Ca^(2+) influx under salt stress. Mutagenesis of OsMPT3;2 altered the enrichment profiles of differentially expressed genes involved mainly in synthesis of secondary metabolites, metabolism of glycolysis, pyruvate, tricarboxylic acid cycle, in response to salt stress. The mutant displayed significant accumulation differences in 14 metabolites involved in 17 metabolic pathways, and strongly up-regulated the accumulation of glutamine, a precursor in proline synthesis, under salt stress. These findings suggest that the OsMPT3 gene modulates phosphate transport and energy supply for ATP synthesis and triggers changes in accumulation of ions and metabolites participating in osmotic regulation in rice under salt stress, thus increasing rice salt tolerance. This study demonstrates the effective application of CRISPR/Cas9 gene-editing to the investigation of plant functional genes.展开更多
基金supported by the National Key Research and Development Program of China(2016YFC0501203)the National Genetically Modified Organism Project(2016ZX08010005-9)。
文摘Plant mitochondrial phosphate transporters regulate phosphate transport and ATP synthesis. Determining whether they function in abiotic stress response process would shed light on their response to salt stress. We used the CRISPR/Cas9 gene-editing system to mutagenize two mitochondrial phosphate transporters, OsMPT3;1 and OsMPT3;2, to investigate their regulatory roles under salt stress. Two cas9(CRISPR-associated protein9)-free homozygous mutants, mpt33 and mpt30, were confirmed to be stable. Both OsMPT3;1 and OsMPT3;2 were markedly induced by salt stress, and their mutagenesis strongly inhibited growth and development, especially under salt stress. Mutagenesis sharply reduced the accumulation of ATP, phosphate, calcium, soluble sugar, and proline and increased osmotic potential, malondialdehyde, and Na^+ /K^+ ratio under salt stress. Both mutants demonstrate normal growth and development in the presence of ATP, revealing high sensitivity to exogenous ATP under salt stress. The mutants showed lowered rates of Na^+ efflux but also of K^+ and Ca^(2+) influx under salt stress. Mutagenesis of OsMPT3;2 altered the enrichment profiles of differentially expressed genes involved mainly in synthesis of secondary metabolites, metabolism of glycolysis, pyruvate, tricarboxylic acid cycle, in response to salt stress. The mutant displayed significant accumulation differences in 14 metabolites involved in 17 metabolic pathways, and strongly up-regulated the accumulation of glutamine, a precursor in proline synthesis, under salt stress. These findings suggest that the OsMPT3 gene modulates phosphate transport and energy supply for ATP synthesis and triggers changes in accumulation of ions and metabolites participating in osmotic regulation in rice under salt stress, thus increasing rice salt tolerance. This study demonstrates the effective application of CRISPR/Cas9 gene-editing to the investigation of plant functional genes.