In this study, the finite element numerical modelling of 2D shaft sections in a Hoek–Brown medium are carried out in a non-hydrostatic stress state in an attempt to predict pressures developing around mine shafts. An...In this study, the finite element numerical modelling of 2D shaft sections in a Hoek–Brown medium are carried out in a non-hydrostatic stress state in an attempt to predict pressures developing around mine shafts. An iterative process of applying support pressure until observing no failure zone around the shaft is used to simulate the required lining support pressure for different shaft models. Later, regression analysis is carried out to find a generic shaft pressure equation representing the rock mass and the stress state. Finally, the developed pressure equation which shows a good agreement with a case study is used in elastic ‘‘thick-walled cylinder" equation to calculate the lining thickness required to prevent the development of a failure zone around the shaft. At the end of the study, a user-friendly object-oriented computer program ‘‘Shaft 2D" is developed to simplify the rigorous shaft lining thickness calculation process.展开更多
For preventing and curing the rupture disaster of shaft lining effectively, according to the additional force theory of shaft lining fracture, more than forty tests were carried out on the large scale test rig on the ...For preventing and curing the rupture disaster of shaft lining effectively, according to the additional force theory of shaft lining fracture, more than forty tests were carried out on the large scale test rig on the basis of simulating theory. The influence of the position of aquifer, the reinforcing scope of aquifer, reinforcing distance and the strength of grouting cemented mixture on the value and variation law of the axial additional force on shaft lining is studied. The relationships between the reinforcing parameters and the axial additional force on shaft lining are obtained, which provides the theoretic foundation and construction design parameters for the method of reinforcing strata by grouting to prevent and cure tbe rupture disaster of shart lining.展开更多
High strength reinforced concrete drilling shaft linings have been adopted to solve the difficult problem of supporting coal drilling shafts penetrating through thick top soils. Through model experiments the stress an...High strength reinforced concrete drilling shaft linings have been adopted to solve the difficult problem of supporting coal drilling shafts penetrating through thick top soils. Through model experiments the stress and strength of such shaft linings are studied. The test results indicate that the load beating capacity of the shaft lining is very high and that the main factors affecting the load bearing capacity are the concrete strength, the ratio of lining thickness to inner radius and the reinforcement ratio. Based on the limit equilibrium conditions and the strength theory of concrete under multi-axial compressive stressed state, a formula for calculating the load-beating capacity of a high strength reinforced concrete shaft lining was obtained. Because the concrete in a shaft lining is in a multi-axial compressive stress state the compressive strength increases to a great extent compared to uni-axial loading. Based on experiment a formula for the gain factor in compressive strength was obtained: it can be used in the structural design of the shaft lining. These results have provided a basis for sound engineering practice when designing this kind of shaft lining structure.展开更多
Numerical simulation was used to estimate the temperature field within a poured concrete,mono-layer freezing-shaft lining.The affects from various factors were investigated.The maximum temperature within the lining in...Numerical simulation was used to estimate the temperature field within a poured concrete,mono-layer freezing-shaft lining.The affects from various factors were investigated.The maximum temperature within the lining increases as the lining thickness increases,decreases as the soil-side wall temperature decreases,decreases as the air temperature inside the shaft decreases and decreases as the air velocity inside the shaft increases.The compression speed of an insulating foam layer affects the maximum temperature difference between the interior and the sidewalls.The maximum temperature difference between the interior and the sidewalls approaches or exceeds the maximum allowable for the curing of poured concrete structures.Attention should be paid to the question of the lining cracking during the curing period.The temperature gradient in the vertical direction may be minimized by preventing air contact against the steel connection board supporting the base of the freshly poured section.展开更多
An alluvium with a sandy aquifer at the bottom,but lacking an effective impermeable layer between the sandy aquifer and bedrock is referred to as a special alluvial stratum.Impacted by the drainage of the aquifer due ...An alluvium with a sandy aquifer at the bottom,but lacking an effective impermeable layer between the sandy aquifer and bedrock is referred to as a special alluvial stratum.Impacted by the drainage of the aquifer due to mining activities,a shaft wall in this special alluvial stratum will be subject to a downward load by an additional vertical force which must be taken into consideration in the design of the shaft wall.The complexity of interaction between shaft wall and the surrounding walls makes it extremely difficult to determine this additional vertical force.For a particular shaft wall in an extra-thick alluvium and assuming that the friction coefficient between shaft wall and stratum does not change with depth,an analysis of a numerical simulation of the stress within the shaft wall has been carried out.Growth and size of the additional vertical stress have been obtained,based on specific values of the friction coefficient,the modulus of elasticity of the drainage layer and the thickness of the drainage layer.Subsequently, the safety of shaft walls with different structural types was studied and a more suitable structural design,providing an important basis for the design of shaft walls,is promoted.展开更多
The failure patterns and energy evolution of three types of shaft lining concrete subjected to static and dynamic loading were reported.The energy and damage characteristics of concrete were determined by means of a u...The failure patterns and energy evolution of three types of shaft lining concrete subjected to static and dynamic loading were reported.The energy and damage characteristics of concrete were determined by means of a uniaxial hydraulic servo machine,acoustic emission (AE) equipment,a split Hopkinson pressure bar (SHPB) and an ultrasonic wave analyser.The experimental results indicate that the confluence of multiple cracks forms a penetrating cross section in normal high-strength concrete (NHSC) under the condition of static loading,while the elastic energy that surges out at failure can cause tremendous damage when subjected to dynamic loading.A single crack was split into multiple propagation directions due to the presence of fibres in steel fibre-reinforced concrete (SFRC);adding fibre to concrete should be an effective way to dissipate energy.The non-steam-cured reactive powder concrete (NSC-RPC) designed in this paper can store and dissipate more energy than normal concrete,as NSC-RPC exhibits a strong ability to resist impact.Applying NSC-RPC to the long-service material of a shaft lining structure in deep underground engineering is quite effective.展开更多
Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the pr...Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the present paper,a thermo-hydro-mechanical(THM)model for freezing of water-saturated soil is proposed to study the effects of frost heave and water migration in frozen soils on the formation of a frozen wall and subsequent excavation activity for sinking a vertical shaft.The governing equations of the model are formulated relative to porosity,temperature,and displacement which are considered as primary variables.The relationship between temperature,pore water,and ice pressure in frozen soil is established by the Clausius-Clapeyron equation,whereas the interaction between the stress-strain behavior and changes in porosity and pore pressure is described with the poromechanics theory.Moreover,constitutive relations for additional mechanical deformation are incorporated to describe volumetric expansion of soil during freezing as well as creep strain of soil in the frozen state.The ability of the proposed model to capture the frost heave of frozen soil is demonstrated by a comparison between numerical results and experimental data given by a one-sided freezing test.Also to validate the model in other freezing conditions,a radial freezing experiment is performed.After the validation procedure,the model is applied to numerical simulation of artificial freezing of silt and sand layers for shaft sinking at Petrikov potash mine in Belarus.Comparison of calculated temperature with thermal monitoring data during active freezing stage is presented.Numerical analysis of deformation of unsupported sidewall of a shaft inside the frozen wall is conducted to account for the change in natural stress-strain state of soil layers induced by artificial freezing.展开更多
Based on the stratum settlement resulting from water drainage, this paper establishes the calculating method of stresses and displacements of shaft lining and stratum by using Fourier integration, obtains the calculat...Based on the stratum settlement resulting from water drainage, this paper establishes the calculating method of stresses and displacements of shaft lining and stratum by using Fourier integration, obtains the calculating formulas of tangiential load which shaft lining is subjected to, and provides theoretical basis for design of shaft lining.展开更多
The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the...The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future.展开更多
Serious shaft lining ruptures have often occurred in the eastern part of China since 1987 due to the complicated geological conditions. This paper tries to find out the relationship between mechanisms of shaft lining ...Serious shaft lining ruptures have often occurred in the eastern part of China since 1987 due to the complicated geological conditions. This paper tries to find out the relationship between mechanisms of shaft lining rupture and the underground mining process. The analysis is based on the existence typical engineering and geological conditions in eastern China;the impact of underground mining on the shaft lining and aquifer layer is analyzed by using numerical method. The impact factors such as different depths, thicknesses, mining widths of coal seam and different distances to the shaft are used in the analysis. The mining area under the aquifer which near the shaft lining has a significant impact on the shaft lining due to mining process, and increases the risk of occurrence of shaft lining rupture.展开更多
The quality problem of the concrete body and backwall grouting of shaft lining must be taken into consideration during the engineering construction of the shaft. Detection and evaluation are needed to determine the pa...The quality problem of the concrete body and backwall grouting of shaft lining must be taken into consideration during the engineering construction of the shaft. Detection and evaluation are needed to determine the parameters such as the location and depth of drilling. The record of elastic wave can be gained through laying the surveying lines of the ring and ver- tical direction in the shaft lining by the elastic wave method. And specifically, through analyzing the different parameters of seismic attribute such as the velocity of high frequency reflection wave, amplitude and frequency, the abnormal range on the wall or under the wall can be forecasted. The concrete quality of shallow layer in the shaft lining can be evaluated through the velocity of surfer wave. Using the evaluating technique of comprehensive frequency and the phase feature of waveform, the basic features such as inner construction, wall back filling and failure depth of shaft lining can be interpreted from qualitatively to half quantitatively, and the interpreting section can be drawn. The results show that the detection effect for the shaft quality is significant by elastic wave technique, and the delineation of abnormal areas is accurate. Its guidance function is better for pro- duction.展开更多
The model of skaft lining under force is developed on the basis of the special stratum condition led to sbart cracking- The model is broken into 3 sub-questions to solve separately. According to the principle of super...The model of skaft lining under force is developed on the basis of the special stratum condition led to sbart cracking- The model is broken into 3 sub-questions to solve separately. According to the principle of superposition and strain compatibility, a second kind Fredholm integral equation is generated.A theoretical solution to vertical additional force on shaft lining is obtained by numerical method to the integral equation.展开更多
Aimed at more than 60 shaft linings damaged in Huaibei, Datun, Xuzhou and Yanzhou mine areas, this paper presents a new type of sliding shaft lining with asphalt blocks sliding layer. By model test, it is obtained tha...Aimed at more than 60 shaft linings damaged in Huaibei, Datun, Xuzhou and Yanzhou mine areas, this paper presents a new type of sliding shaft lining with asphalt blocks sliding layer. By model test, it is obtained that the deformation characteristics and the mechanical mechanisms of the sliding shaft lining under the condition of ground subsidence. The research results provide a testing basis for the sliding shaft lining design. By now, this kind of sliding shaft lining had been applied in 9 shafts in China and Bangladesh.展开更多
The cell wall composition and structure of the maize stalk directly affects its digestibility and in turn its feed value.Previous studies of stem quality have focused mostly on common maize germplasm,and few studies h...The cell wall composition and structure of the maize stalk directly affects its digestibility and in turn its feed value.Previous studies of stem quality have focused mostly on common maize germplasm,and few studies have focused on high-oil cultivars with high grain and straw quality.Investigation of the genetic basis of cell wall composition and digestibility of maize stalk using high-oil maize is desirable for improving maize forage quality.In the present study,a high-oil inbred line(By804)was crossed as male parent with the maize inbred line B73 to construct a population of 188 recombinant inbred lines(RILs).The phenotypes of six cell-wall-related traits were recorded,and QTL analysis was performed with a genetic map constructed with SNP markers.All traits were significantly correlated with one another and showed high broad-sense heritability.Of 20 QTLs mapped,the QTL associated with each trait explained 10.0%–41.1%of phenotypic variation.Approximately half of the QTL each explained over 10%of the phenotypic variation.These results provide a theoretical basis for improving maize forage quality by marker-assisted selection.展开更多
Perturbation method of boundary geometry(PMOBG) used in Lapiacian problems is dealt with and the three--term perturbation expression of distributed capacitance of a coaxial line with perturbed walls is obtained. As an...Perturbation method of boundary geometry(PMOBG) used in Lapiacian problems is dealt with and the three--term perturbation expression of distributed capacitance of a coaxial line with perturbed walls is obtained. As an example,four-order expression of distributed capacitance of a elliptic coaxial line with small eccentricity is given.展开更多
This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the prop...This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the propeller and intermediate shafts, under the influence of propeller-induced static and variable hydrodynamic excitations are also studied. The transfer matrix method related to the constant coefficients of differential equation solutions is used. The advantage of the latter as compared with a well-known method of transfer matrix associated with state vector is the possibility of reducing the number of multiplied matrices when adjacent shaft segments have the same material properties and diameters. The results show that there is no risk of buckling and confirm that the strength of the shaft line depends on the value of the static tangential stresses which is the most important component of the stress tensor.展开更多
To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study wa...To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study was conducted on a 1.35 k W magnetically shielded Hall thruster with a xenon propellant. Different magnetic field lines were chosen, and corresponding tangentially matched channel walls were manufactured and utilized. The results demonstrate that high performance and a qualified anti-sputtering effect cannot be achieved simultaneously. When the magnetic field lines that match the chamfered wall have a strength at the channel centerline of less than 12% of the maximum field strength, the channel wall can be adequately protected from ion sputtering. When the magnetic field lines have a strength ratio of 12%–20%, the thruster performance is high. These findings provide the first significant quantitative design reference for the match between the magnetic field line and chamfered channel wall in magnetically shielded Hall thrusters.展开更多
With high rock slope in shiplock area, thin reinforced concrete lining walls are constructed for the shiplock system. The construction technology involves much complicated structures in formwork, frequent interference...With high rock slope in shiplock area, thin reinforced concrete lining walls are constructed for the shiplock system. The construction technology involves much complicated structures in formwork, frequent interference due to crossover working procedures, tight time schedule, high quality of reinforced concrete and showcase appearance requirements, hidden troubles affecting construction safety. With above-mentioned factors in consideration, a single-side-separated sliding formwork technology advanced from past sliding formwork experiences has been developed and applied successfully. This new technology is beneficial in quick and safe operation, capable to assure best quality and appearance of shiplock concrete works, and has filled up the gap in terms of construction sliding formwork in our country.展开更多
Subsidence results in a negative force of friction on the outer surface of the shaft lining. This negative force has in recent years led to damage or even destruction of over 20shafts. In the light of this shaft failu...Subsidence results in a negative force of friction on the outer surface of the shaft lining. This negative force has in recent years led to damage or even destruction of over 20shafts. In the light of this shaft failure mechanism, analytic comparison is conducted on three shaft lining structures as to their respective behaviour under the negative force of friction, by making use of modelling tests. A new shaft lining structure is therefore proposed which is designed to be adaptable to subsidence and found to be rational. Finally designing principles are given.展开更多
During the process of laying long-distance oil and gas transmission pipelines, the hot-induction-bend method is extensively used when the direction has to be changed. By considering the pipeline' s ongoing processing...During the process of laying long-distance oil and gas transmission pipelines, the hot-induction-bend method is extensively used when the direction has to be changed. By considering the pipeline' s ongoing processing and loading states during service, the pipeline that is generally used exhibits thicker walls than those that are observed in the line pipe. As such, during pipeline construction, hot-induction-bend and line pipes with different wall thickness are girth-welded. The chemical composition of hot-induction-bend and line pipes differs, with the carbon content being particularly higher in the hot-induction-bend pipe;it also depicts a higher carbon equivalent, which makes it possible to modify the girth of the pipe. In this study, using Baosteel' s standard X70M UOE hot- induction-bend and line pipes, solid-wire automatic gas-metal-arc girth welding was performed and the performance of the girth-welded joint was evaluated. Furthermore,the weldability of the pipeline girth and the microstructure of the girth-welded joint were analyzed. The results reveal that Baosteel' s standard UOE hot-induction-bend and line pipes exhibit good girth weldability, and their technical quality can be guaranteed in case of consumer field- construction applications.展开更多
文摘In this study, the finite element numerical modelling of 2D shaft sections in a Hoek–Brown medium are carried out in a non-hydrostatic stress state in an attempt to predict pressures developing around mine shafts. An iterative process of applying support pressure until observing no failure zone around the shaft is used to simulate the required lining support pressure for different shaft models. Later, regression analysis is carried out to find a generic shaft pressure equation representing the rock mass and the stress state. Finally, the developed pressure equation which shows a good agreement with a case study is used in elastic ‘‘thick-walled cylinder" equation to calculate the lining thickness required to prevent the development of a failure zone around the shaft. At the end of the study, a user-friendly object-oriented computer program ‘‘Shaft 2D" is developed to simplify the rigorous shaft lining thickness calculation process.
文摘For preventing and curing the rupture disaster of shaft lining effectively, according to the additional force theory of shaft lining fracture, more than forty tests were carried out on the large scale test rig on the basis of simulating theory. The influence of the position of aquifer, the reinforcing scope of aquifer, reinforcing distance and the strength of grouting cemented mixture on the value and variation law of the axial additional force on shaft lining is studied. The relationships between the reinforcing parameters and the axial additional force on shaft lining are obtained, which provides the theoretic foundation and construction design parameters for the method of reinforcing strata by grouting to prevent and cure tbe rupture disaster of shart lining.
基金Project 050440502 supported by the Natural Science Foundation of Anhui Province
文摘High strength reinforced concrete drilling shaft linings have been adopted to solve the difficult problem of supporting coal drilling shafts penetrating through thick top soils. Through model experiments the stress and strength of such shaft linings are studied. The test results indicate that the load beating capacity of the shaft lining is very high and that the main factors affecting the load bearing capacity are the concrete strength, the ratio of lining thickness to inner radius and the reinforcement ratio. Based on the limit equilibrium conditions and the strength theory of concrete under multi-axial compressive stressed state, a formula for calculating the load-beating capacity of a high strength reinforced concrete shaft lining was obtained. Because the concrete in a shaft lining is in a multi-axial compressive stress state the compressive strength increases to a great extent compared to uni-axial loading. Based on experiment a formula for the gain factor in compressive strength was obtained: it can be used in the structural design of the shaft lining. These results have provided a basis for sound engineering practice when designing this kind of shaft lining structure.
基金provided by the Office of National Science and Technology (No.2006BAB16B01)the Physics Program of the Henan Province Education Department (No.2009B 560004)the Doctoral Fund of Henan Polytechnic University (No.648234)
文摘Numerical simulation was used to estimate the temperature field within a poured concrete,mono-layer freezing-shaft lining.The affects from various factors were investigated.The maximum temperature within the lining increases as the lining thickness increases,decreases as the soil-side wall temperature decreases,decreases as the air temperature inside the shaft decreases and decreases as the air velocity inside the shaft increases.The compression speed of an insulating foam layer affects the maximum temperature difference between the interior and the sidewalls.The maximum temperature difference between the interior and the sidewalls approaches or exceeds the maximum allowable for the curing of poured concrete structures.Attention should be paid to the question of the lining cracking during the curing period.The temperature gradient in the vertical direction may be minimized by preventing air contact against the steel connection board supporting the base of the freshly poured section.
文摘An alluvium with a sandy aquifer at the bottom,but lacking an effective impermeable layer between the sandy aquifer and bedrock is referred to as a special alluvial stratum.Impacted by the drainage of the aquifer due to mining activities,a shaft wall in this special alluvial stratum will be subject to a downward load by an additional vertical force which must be taken into consideration in the design of the shaft wall.The complexity of interaction between shaft wall and the surrounding walls makes it extremely difficult to determine this additional vertical force.For a particular shaft wall in an extra-thick alluvium and assuming that the friction coefficient between shaft wall and stratum does not change with depth,an analysis of a numerical simulation of the stress within the shaft wall has been carried out.Growth and size of the additional vertical stress have been obtained,based on specific values of the friction coefficient,the modulus of elasticity of the drainage layer and the thickness of the drainage layer.Subsequently, the safety of shaft walls with different structural types was studied and a more suitable structural design,providing an important basis for the design of shaft walls,is promoted.
基金the National Natural Science Foundation of China(No.51678049)the State Key Research Development Program of China(No.2016YFC0600803)。
文摘The failure patterns and energy evolution of three types of shaft lining concrete subjected to static and dynamic loading were reported.The energy and damage characteristics of concrete were determined by means of a uniaxial hydraulic servo machine,acoustic emission (AE) equipment,a split Hopkinson pressure bar (SHPB) and an ultrasonic wave analyser.The experimental results indicate that the confluence of multiple cracks forms a penetrating cross section in normal high-strength concrete (NHSC) under the condition of static loading,while the elastic energy that surges out at failure can cause tremendous damage when subjected to dynamic loading.A single crack was split into multiple propagation directions due to the presence of fibres in steel fibre-reinforced concrete (SFRC);adding fibre to concrete should be an effective way to dissipate energy.The non-steam-cured reactive powder concrete (NSC-RPC) designed in this paper can store and dissipate more energy than normal concrete,as NSC-RPC exhibits a strong ability to resist impact.Applying NSC-RPC to the long-service material of a shaft lining structure in deep underground engineering is quite effective.
基金supported by 17-11-01204 project(Russian Science Foundation)。
文摘Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the present paper,a thermo-hydro-mechanical(THM)model for freezing of water-saturated soil is proposed to study the effects of frost heave and water migration in frozen soils on the formation of a frozen wall and subsequent excavation activity for sinking a vertical shaft.The governing equations of the model are formulated relative to porosity,temperature,and displacement which are considered as primary variables.The relationship between temperature,pore water,and ice pressure in frozen soil is established by the Clausius-Clapeyron equation,whereas the interaction between the stress-strain behavior and changes in porosity and pore pressure is described with the poromechanics theory.Moreover,constitutive relations for additional mechanical deformation are incorporated to describe volumetric expansion of soil during freezing as well as creep strain of soil in the frozen state.The ability of the proposed model to capture the frost heave of frozen soil is demonstrated by a comparison between numerical results and experimental data given by a one-sided freezing test.Also to validate the model in other freezing conditions,a radial freezing experiment is performed.After the validation procedure,the model is applied to numerical simulation of artificial freezing of silt and sand layers for shaft sinking at Petrikov potash mine in Belarus.Comparison of calculated temperature with thermal monitoring data during active freezing stage is presented.Numerical analysis of deformation of unsupported sidewall of a shaft inside the frozen wall is conducted to account for the change in natural stress-strain state of soil layers induced by artificial freezing.
文摘Based on the stratum settlement resulting from water drainage, this paper establishes the calculating method of stresses and displacements of shaft lining and stratum by using Fourier integration, obtains the calculating formulas of tangiential load which shaft lining is subjected to, and provides theoretical basis for design of shaft lining.
文摘The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future.
文摘Serious shaft lining ruptures have often occurred in the eastern part of China since 1987 due to the complicated geological conditions. This paper tries to find out the relationship between mechanisms of shaft lining rupture and the underground mining process. The analysis is based on the existence typical engineering and geological conditions in eastern China;the impact of underground mining on the shaft lining and aquifer layer is analyzed by using numerical method. The impact factors such as different depths, thicknesses, mining widths of coal seam and different distances to the shaft are used in the analysis. The mining area under the aquifer which near the shaft lining has a significant impact on the shaft lining due to mining process, and increases the risk of occurrence of shaft lining rupture.
文摘The quality problem of the concrete body and backwall grouting of shaft lining must be taken into consideration during the engineering construction of the shaft. Detection and evaluation are needed to determine the parameters such as the location and depth of drilling. The record of elastic wave can be gained through laying the surveying lines of the ring and ver- tical direction in the shaft lining by the elastic wave method. And specifically, through analyzing the different parameters of seismic attribute such as the velocity of high frequency reflection wave, amplitude and frequency, the abnormal range on the wall or under the wall can be forecasted. The concrete quality of shallow layer in the shaft lining can be evaluated through the velocity of surfer wave. Using the evaluating technique of comprehensive frequency and the phase feature of waveform, the basic features such as inner construction, wall back filling and failure depth of shaft lining can be interpreted from qualitatively to half quantitatively, and the interpreting section can be drawn. The results show that the detection effect for the shaft quality is significant by elastic wave technique, and the delineation of abnormal areas is accurate. Its guidance function is better for pro- duction.
文摘The model of skaft lining under force is developed on the basis of the special stratum condition led to sbart cracking- The model is broken into 3 sub-questions to solve separately. According to the principle of superposition and strain compatibility, a second kind Fredholm integral equation is generated.A theoretical solution to vertical additional force on shaft lining is obtained by numerical method to the integral equation.
文摘Aimed at more than 60 shaft linings damaged in Huaibei, Datun, Xuzhou and Yanzhou mine areas, this paper presents a new type of sliding shaft lining with asphalt blocks sliding layer. By model test, it is obtained that the deformation characteristics and the mechanical mechanisms of the sliding shaft lining under the condition of ground subsidence. The research results provide a testing basis for the sliding shaft lining design. By now, this kind of sliding shaft lining had been applied in 9 shafts in China and Bangladesh.
基金supported by the National Key Research and Development Program of China(2017YFD0101201 and2016YFD0101002)the Chinese Academy of Agricultural Sciences through the Agricultural Science and Technology Innovation Program(CAAS-ASTIP-2017-TRICAAS)National Engineering Laboratory for Crop Molecular Breeding
文摘The cell wall composition and structure of the maize stalk directly affects its digestibility and in turn its feed value.Previous studies of stem quality have focused mostly on common maize germplasm,and few studies have focused on high-oil cultivars with high grain and straw quality.Investigation of the genetic basis of cell wall composition and digestibility of maize stalk using high-oil maize is desirable for improving maize forage quality.In the present study,a high-oil inbred line(By804)was crossed as male parent with the maize inbred line B73 to construct a population of 188 recombinant inbred lines(RILs).The phenotypes of six cell-wall-related traits were recorded,and QTL analysis was performed with a genetic map constructed with SNP markers.All traits were significantly correlated with one another and showed high broad-sense heritability.Of 20 QTLs mapped,the QTL associated with each trait explained 10.0%–41.1%of phenotypic variation.Approximately half of the QTL each explained over 10%of the phenotypic variation.These results provide a theoretical basis for improving maize forage quality by marker-assisted selection.
基金the Open Foundation of State Key Laboratory of Advanced Technology for Materials Synthersis Processing
文摘Perturbation method of boundary geometry(PMOBG) used in Lapiacian problems is dealt with and the three--term perturbation expression of distributed capacitance of a coaxial line with perturbed walls is obtained. As an example,four-order expression of distributed capacitance of a elliptic coaxial line with small eccentricity is given.
文摘This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the propeller and intermediate shafts, under the influence of propeller-induced static and variable hydrodynamic excitations are also studied. The transfer matrix method related to the constant coefficients of differential equation solutions is used. The advantage of the latter as compared with a well-known method of transfer matrix associated with state vector is the possibility of reducing the number of multiplied matrices when adjacent shaft segments have the same material properties and diameters. The results show that there is no risk of buckling and confirm that the strength of the shaft line depends on the value of the static tangential stresses which is the most important component of the stress tensor.
基金funded by National Natural Science Foundation of China (Nos. 52076054 and 51736003)Civil Aerospace Technology Pre-research Project (No. D03015)Defense Industrial Technology Development Program (No. JCKY2019603B005)。
文摘To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study was conducted on a 1.35 k W magnetically shielded Hall thruster with a xenon propellant. Different magnetic field lines were chosen, and corresponding tangentially matched channel walls were manufactured and utilized. The results demonstrate that high performance and a qualified anti-sputtering effect cannot be achieved simultaneously. When the magnetic field lines that match the chamfered wall have a strength at the channel centerline of less than 12% of the maximum field strength, the channel wall can be adequately protected from ion sputtering. When the magnetic field lines have a strength ratio of 12%–20%, the thruster performance is high. These findings provide the first significant quantitative design reference for the match between the magnetic field line and chamfered channel wall in magnetically shielded Hall thrusters.
文摘With high rock slope in shiplock area, thin reinforced concrete lining walls are constructed for the shiplock system. The construction technology involves much complicated structures in formwork, frequent interference due to crossover working procedures, tight time schedule, high quality of reinforced concrete and showcase appearance requirements, hidden troubles affecting construction safety. With above-mentioned factors in consideration, a single-side-separated sliding formwork technology advanced from past sliding formwork experiences has been developed and applied successfully. This new technology is beneficial in quick and safe operation, capable to assure best quality and appearance of shiplock concrete works, and has filled up the gap in terms of construction sliding formwork in our country.
文摘Subsidence results in a negative force of friction on the outer surface of the shaft lining. This negative force has in recent years led to damage or even destruction of over 20shafts. In the light of this shaft failure mechanism, analytic comparison is conducted on three shaft lining structures as to their respective behaviour under the negative force of friction, by making use of modelling tests. A new shaft lining structure is therefore proposed which is designed to be adaptable to subsidence and found to be rational. Finally designing principles are given.
文摘During the process of laying long-distance oil and gas transmission pipelines, the hot-induction-bend method is extensively used when the direction has to be changed. By considering the pipeline' s ongoing processing and loading states during service, the pipeline that is generally used exhibits thicker walls than those that are observed in the line pipe. As such, during pipeline construction, hot-induction-bend and line pipes with different wall thickness are girth-welded. The chemical composition of hot-induction-bend and line pipes differs, with the carbon content being particularly higher in the hot-induction-bend pipe;it also depicts a higher carbon equivalent, which makes it possible to modify the girth of the pipe. In this study, using Baosteel' s standard X70M UOE hot- induction-bend and line pipes, solid-wire automatic gas-metal-arc girth welding was performed and the performance of the girth-welded joint was evaluated. Furthermore,the weldability of the pipeline girth and the microstructure of the girth-welded joint were analyzed. The results reveal that Baosteel' s standard UOE hot-induction-bend and line pipes exhibit good girth weldability, and their technical quality can be guaranteed in case of consumer field- construction applications.