Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is app...Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.展开更多
Precise control of machining deformation is crucial for improving the manufacturing quality of structural aerospace components.In the machining process,different batches of blanks have different residual stress distri...Precise control of machining deformation is crucial for improving the manufacturing quality of structural aerospace components.In the machining process,different batches of blanks have different residual stress distributions,which pose a significant challenge to machining deformation control.In this study,a reinforcement learning method for machining deformation control based on a meta-invariant feature space was developed.The proposed method uses a reinforcement-learning model to dynamically control the machining process by monitoring the deformation force.Moreover,combined with a meta-invariant feature space,the proposed method learns the internal relationship of the deformation control approaches under different stress distributions to achieve the machining deformation control of different batches of blanks.Finally,the experimental results show that the proposed method achieves better deformation control than the two existing benchmarking methods.展开更多
In this paper, based on the idea of finite element method, the initial parametric method in bending, problem of a beam is extended to analyse the bar-system structure by employing Dirac function and llcavisidc step fu...In this paper, based on the idea of finite element method, the initial parametric method in bending, problem of a beam is extended to analyse the bar-system structure by employing Dirac function and llcavisidc step function.Then a new method for analysing the internal forces and deformations of bar-system structure in space is suggested by improving the mixed method in statically indeterminate structure.The inferred process and obtained answer will be more succinct and accurate when the problem of internal forces and deformations of bar-system structure is analysed by using the new method provided in this paper.展开更多
The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surfa...The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surface loads. Two particular cases considered are: two-dimensional normal strip loading and axisymmetric normal disc loading. It is found that a negative Poisson’s ratio makes the Mandel-Cryer effect more prominent. It also results in an increase in the magnitude of the surface settlement.展开更多
Based on the coordinates, velocities and their error estimations of 595 GPS, SLR and VLBI stations issued by IERS in March 2001, the current asymmetrical deformation of the Earth is studied. The results show that the ...Based on the coordinates, velocities and their error estimations of 595 GPS, SLR and VLBI stations issued by IERS in March 2001, the current asymmetrical deformation of the Earth is studied. The results show that the northern hemisphere of the Earth is undergoing compressive deformation, and the southern hemisphere is undergoing extensional deformation with the equator as the boundary. If the longitude line of 90°E and 90°W is taken as the boundary, the Pacific hemisphere (with 180° as its central longitude) is undergoing compressive deformation, and the Atlantic hemisphere (with 0° as its central longitude) is undergoing extensional deformation. The deformation patterns indicate again that the Earth is undergoing some dual-asymmetrical deformation. Moreover, taking 6 366.740 km as the standard mean curvature radius of the Earth, the velocity of volume change calculated from the data of space geodesy is 6.65x10-(11)m3/a.展开更多
We discuss the generalized Lagrange structure of a deformed Minkowski space (DMS), , namely a (four-dimensional) generalization of the (local) space-time based on an energy-dependent “deformation” of the usual Minko...We discuss the generalized Lagrange structure of a deformed Minkowski space (DMS), , namely a (four-dimensional) generalization of the (local) space-time based on an energy-dependent “deformation” of the usual Minkowski geometry. In , local Lorentz invariance is naturally violated, due to the energy dependence of the deformed metric. Moreover, the generalized Lagrange structure of allows one to endow the deformed space-time with both curvature and torsion.展开更多
In this article, the comparison of excitation in high frequencies of acoustic-electromagnetic wave in piezoelecric crystal and crystal with potential of deformation GaAs is investigating. Possible mechanisms of coupli...In this article, the comparison of excitation in high frequencies of acoustic-electromagnetic wave in piezoelecric crystal and crystal with potential of deformation GaAs is investigating. Possible mechanisms of coupling different hybrid waves are the piezoeffect and the deformation potential. As a model it is analyzing a film of crystal places between two symmetrical substrates with the other materials without an acoustic contact. This film includes 2D electron gas with a high negative differential conductivity and uniform initial distribution of electrons. The hybrid acoustic-electromagnetic wave and hybrid space charge wave interact. Amplification of space charge wave takes place due to negative differential conductivity in GaAs. This amplification of space charge waves is causing the amplification of acoustic-electromagnetic wave. It is to show that the symmetric modes, emerging as transverse ones, interact more effectively with the space charge waves. Another important result is the following: at the frequencies f ≈ 10 GHz, the excitation efficiency of acoustic-electromagnetic wave with transverse displacement due to piezoeffect is more effective, but at higher frequencies, the deformation potential is dominating.展开更多
Road accident detection plays an important role in abnormal scene reconstruction for Intelligent Transportation Systems and abnormal events warning for autonomous driving.This paper presents a novel 3D object detector...Road accident detection plays an important role in abnormal scene reconstruction for Intelligent Transportation Systems and abnormal events warning for autonomous driving.This paper presents a novel 3D object detector and adaptive space partitioning algorithm to infer traffic accidents quantitatively.Using 2D region proposals in an RGB image,this method generates deformable frustums based on point cloud for each 2D region proposal and then frustum-wisely extracts features based on the farthest point sampling network(FPS-Net)and feature extraction network(FE-Net).Subsequently,the encoder-decoder network(ED-Net)implements 3D-oriented bounding box(OBB)regression.Meanwhile,the adaptive least square regression(ALSR)method is proposed to split 3D OBB.Finally,the reduced OBB intersection test is carried out to detect traffic accidents via separating surface theorem(SST).In the experiments of KITTI benchmark,our proposed 3D object detector outperforms other state-of-theartmethods.Meanwhile,collision detection algorithm achieves the satisfactory performance of 91.8%accuracy on our SHTA dataset.展开更多
Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nut...Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.展开更多
Rotating Space Slender Flexible Structures(RSSFS)are extensively utilized in space operations because of their light weight,mobility,and low energy consumption.To realize the accurate space operation of the RSSFS,it i...Rotating Space Slender Flexible Structures(RSSFS)are extensively utilized in space operations because of their light weight,mobility,and low energy consumption.To realize the accurate space operation of the RSSFS,it is necessary to establish a precise mechanical model and develop a control algorithm with high precision.However,with the application of traditional control strategies,the RSSFS often suffers from the chattering phenomenon,which will aggravate structure vibration.In this paper,novel deformation description is put forward to balance modeling accuracy and computational efficiency of the RSSFS,which is better appropriate for real-time control.Besides,the Neural Network Sliding Mode Control(NNSMC)strategy modified by the hyperbolic tangent(tanh)function is put forward to compensate for modeling errors and reduce the chattering phenomenon,thereby improving the trajectory tracking accuracy of the RSSFS.Firstly,a mathematical model for the RSSFS is developed according to the novel deformation description and the vibration theory of flexible structure.Comparison of the deformation accuracy between different models proves that the novel modeling method proposed has high modeling accuracy.Next,the universal approximation property of the Radial Basis Function(RBF)neural network is put forward to determine and compensate for modeling errors,which consist of higher-order modes and the uncertainties of external disturbances.In addition,the tanh function is proposed as the reaching law in the conventional NNSMC strategy to suppress driving torque oscillation.The control law of modified NNSMC strategy and the adaptive law of weight coefficients are developed according to the Lyapunov theorem to guarantee the RSSFS stability.Finally,the simulation and physical experimental tests of the RSSFS with different control strategies are conducted.Experimental results show that the control law according to the novel deformation description and the modified NNSMC strategy can obtain accurate tracking of the rotation and reduce the vibration of the RSSFS simultaneously.展开更多
We construct explicitly even and odd q-coherent states.These q-coherent states are introduced in terms of the q-functions defined in the paper.It is shown that the even and odd q-coherent states form a kind of represe...We construct explicitly even and odd q-coherent states.These q-coherent states are introduced in terms of the q-functions defined in the paper.It is shown that the even and odd q-coherent states form a kind of representations of the q-deformed Heisenberg-Weyl algebra which is realized in the form of matrix q-differential operators in the even and odd q-coherent state space.We also analyse some different between the even and odd q-CSs and the usual even and odd CSs.展开更多
Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was ...Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was embedded in a 150 mm concrete cube,and the test embedded length was four times of the rebar diameter.Relationship between the mode of failure,the average bond strength and the average bond strength-slip for each rebar was analyzed.Results show that the failure mode of all specimens is the shearing off or desquamation of ribs,no splitting cracks appear on the cube specimens.The bond stress of deformed GFRP rebars mainly depends on the mechanical interaction between the ribs of the bar and the surrounding concrete,and the bond strength of deformed GFRP rebars is improved obviously.The optimal rib spacing is less than 2.5 times of the rebar diameter,and the rib height is more than 3% of the rebar diameter.展开更多
Digital speckle pattern interferometry (DSPI) is a high-precision deformation t technique for planar objects. However, for curved objects, the three-dimensional (3D) shape information is needed in order to obtain ...Digital speckle pattern interferometry (DSPI) is a high-precision deformation t technique for planar objects. However, for curved objects, the three-dimensional (3D) shape information is needed in order to obtain correct deformation measurement in DSPI. Thus, combined shape and deformation measurement techniques of DSPI have been proposed. However, the current techniques are either complex in setup or complicated in operation. Furthermore, the operations of some techniques are too slow for real-time measurement. In this work, we propose a DSPI technique for both 3D shape and out-of-plane deformation measurement. Compared with current techniques, the proposed technique is simple in both setup and operation and is capable of fast deformation measurement. Theoretical analysis and experiments are performed. For a cylinder surface with an arch height of 9 mm, the error of out-of-plane deformation measurement is less than 0.15 μm. The effectiveness of the proposed scheme is verified.展开更多
Our aim in the present article is to introduce and study new types of retractions of Lobachevsky space. Types of the deformation retracts of Lobachevsky space are presented. The relations between the folding and the d...Our aim in the present article is to introduce and study new types of retractions of Lobachevsky space. Types of the deformation retracts of Lobachevsky space are presented. The relations between the folding and the deformation retract of Lobachevsky space are deduced. Types of minimal retractions of Lobachevsky space are also presented. Also, the isometric and topological folding in each case and the relation between the deformation retracts after and before folding have been obtained. New types of homotopy maps are deduced. Theorems governing this connection are achieved.展开更多
Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation ...Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation between f<sup>-1</sup>(0) and g<sup>-1</sup>(0). And both the Fréchet differentiability and the continuity of Fréchet derivative of every convex functional defined on an open subset of a Banach space are shown.展开更多
We will introduce a new connection between some transformations and some aspects of differential geometry of some curves in Minkowski space. The concept of folding, retractions and contraction on some curves in Minkow...We will introduce a new connection between some transformations and some aspects of differential geometry of some curves in Minkowski space. The concept of folding, retractions and contraction on some curves in Minkowski space will be characterized by using some aspects of differential geometry. Types of the deformation retracts of some curves in Minkowski 3-space are obtained. The relations between the foldings and the deformation retracts of some curves are deduced. The connections between some transformations and time like, space like, light like of some curves in Minkowski 3-space are also presented.展开更多
路面病害自动化检测是实现道路智慧化管养的关键技术之一,针对路面病害图像中病害目标占比小、不同类型病害尺度差异大、背景环境复杂等特性,基于YOLOv8架构,提出聚焦形状特征的路面病害检测算法FSF-YOLO(focusing on shape features YO...路面病害自动化检测是实现道路智慧化管养的关键技术之一,针对路面病害图像中病害目标占比小、不同类型病害尺度差异大、背景环境复杂等特性,基于YOLOv8架构,提出聚焦形状特征的路面病害检测算法FSF-YOLO(focusing on shape features YOLO)。构建一种无信息丢失的加强特征提取模块,通过保留多维度空间特征信息,增强骨干网络对低分辨率图像和细小病害目标的特征提取能力;引入可形变注意力特征融合模块,利用病害细长形状特征拓展目标识别区域,提高模型对于长距离病害目标的特征表达能力;运用分组卷积空间金字塔池化模块,强化不同尺寸病害目标特征识别;采用轻量级共享卷积检测头,减少网络参数量和计算量。实验结果表明,提出的方法对不同类别的路面病害目标均获得了较好的效果,在RDD2022数据集上的平均精度达到67.3%,与原算法相比提升了5.3个百分点,整体性能优于其他路面病害检测算法。展开更多
文摘Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.
基金This work is supported by National Key R&D Programs of China,No.2021YFB3301302the National Natural Science Foundation of China,No.52175467the National Science Fund of China for Distinguished Young Scholars,No.51925505。
文摘Precise control of machining deformation is crucial for improving the manufacturing quality of structural aerospace components.In the machining process,different batches of blanks have different residual stress distributions,which pose a significant challenge to machining deformation control.In this study,a reinforcement learning method for machining deformation control based on a meta-invariant feature space was developed.The proposed method uses a reinforcement-learning model to dynamically control the machining process by monitoring the deformation force.Moreover,combined with a meta-invariant feature space,the proposed method learns the internal relationship of the deformation control approaches under different stress distributions to achieve the machining deformation control of different batches of blanks.Finally,the experimental results show that the proposed method achieves better deformation control than the two existing benchmarking methods.
文摘In this paper, based on the idea of finite element method, the initial parametric method in bending, problem of a beam is extended to analyse the bar-system structure by employing Dirac function and llcavisidc step function.Then a new method for analysing the internal forces and deformations of bar-system structure in space is suggested by improving the mixed method in statically indeterminate structure.The inferred process and obtained answer will be more succinct and accurate when the problem of internal forces and deformations of bar-system structure is analysed by using the new method provided in this paper.
文摘The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surface loads. Two particular cases considered are: two-dimensional normal strip loading and axisymmetric normal disc loading. It is found that a negative Poisson’s ratio makes the Mandel-Cryer effect more prominent. It also results in an increase in the magnitude of the surface settlement.
基金State Natural Science Foundation of China (49834020).
文摘Based on the coordinates, velocities and their error estimations of 595 GPS, SLR and VLBI stations issued by IERS in March 2001, the current asymmetrical deformation of the Earth is studied. The results show that the northern hemisphere of the Earth is undergoing compressive deformation, and the southern hemisphere is undergoing extensional deformation with the equator as the boundary. If the longitude line of 90°E and 90°W is taken as the boundary, the Pacific hemisphere (with 180° as its central longitude) is undergoing compressive deformation, and the Atlantic hemisphere (with 0° as its central longitude) is undergoing extensional deformation. The deformation patterns indicate again that the Earth is undergoing some dual-asymmetrical deformation. Moreover, taking 6 366.740 km as the standard mean curvature radius of the Earth, the velocity of volume change calculated from the data of space geodesy is 6.65x10-(11)m3/a.
文摘We discuss the generalized Lagrange structure of a deformed Minkowski space (DMS), , namely a (four-dimensional) generalization of the (local) space-time based on an energy-dependent “deformation” of the usual Minkowski geometry. In , local Lorentz invariance is naturally violated, due to the energy dependence of the deformed metric. Moreover, the generalized Lagrange structure of allows one to endow the deformed space-time with both curvature and torsion.
文摘In this article, the comparison of excitation in high frequencies of acoustic-electromagnetic wave in piezoelecric crystal and crystal with potential of deformation GaAs is investigating. Possible mechanisms of coupling different hybrid waves are the piezoeffect and the deformation potential. As a model it is analyzing a film of crystal places between two symmetrical substrates with the other materials without an acoustic contact. This film includes 2D electron gas with a high negative differential conductivity and uniform initial distribution of electrons. The hybrid acoustic-electromagnetic wave and hybrid space charge wave interact. Amplification of space charge wave takes place due to negative differential conductivity in GaAs. This amplification of space charge waves is causing the amplification of acoustic-electromagnetic wave. It is to show that the symmetric modes, emerging as transverse ones, interact more effectively with the space charge waves. Another important result is the following: at the frequencies f ≈ 10 GHz, the excitation efficiency of acoustic-electromagnetic wave with transverse displacement due to piezoeffect is more effective, but at higher frequencies, the deformation potential is dominating.
基金National Natural Science Foundation of China(No.51805312)in part by Shanghai Sailing Program(No.18YF1409400)+4 种基金in part by Training and Funding Program of Shanghai College young teachers(No.ZZGCD15102)in part by Scientific Research Project of Shanghai University of Engineering Science(No.2016-19)in part by Science and Technology Commission of Shanghai Municipality(No.19030501100)in part by the Shanghai University of Engineering Science Innovation Fund for Graduate Students(No.18KY0613)in part by National Key R&D Program of China(No.2016YFC0802900).
文摘Road accident detection plays an important role in abnormal scene reconstruction for Intelligent Transportation Systems and abnormal events warning for autonomous driving.This paper presents a novel 3D object detector and adaptive space partitioning algorithm to infer traffic accidents quantitatively.Using 2D region proposals in an RGB image,this method generates deformable frustums based on point cloud for each 2D region proposal and then frustum-wisely extracts features based on the farthest point sampling network(FPS-Net)and feature extraction network(FE-Net).Subsequently,the encoder-decoder network(ED-Net)implements 3D-oriented bounding box(OBB)regression.Meanwhile,the adaptive least square regression(ALSR)method is proposed to split 3D OBB.Finally,the reduced OBB intersection test is carried out to detect traffic accidents via separating surface theorem(SST).In the experiments of KITTI benchmark,our proposed 3D object detector outperforms other state-of-theartmethods.Meanwhile,collision detection algorithm achieves the satisfactory performance of 91.8%accuracy on our SHTA dataset.
基金supported by the National Natural Science Foundation of China(11972077,11672035)。
文摘Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.
基金Supported by the Applied Basic Research Program of Liaoning Province,China(No.2023JH2/101300159)the National Natural Science Foundation of China(No.52275090).
文摘Rotating Space Slender Flexible Structures(RSSFS)are extensively utilized in space operations because of their light weight,mobility,and low energy consumption.To realize the accurate space operation of the RSSFS,it is necessary to establish a precise mechanical model and develop a control algorithm with high precision.However,with the application of traditional control strategies,the RSSFS often suffers from the chattering phenomenon,which will aggravate structure vibration.In this paper,novel deformation description is put forward to balance modeling accuracy and computational efficiency of the RSSFS,which is better appropriate for real-time control.Besides,the Neural Network Sliding Mode Control(NNSMC)strategy modified by the hyperbolic tangent(tanh)function is put forward to compensate for modeling errors and reduce the chattering phenomenon,thereby improving the trajectory tracking accuracy of the RSSFS.Firstly,a mathematical model for the RSSFS is developed according to the novel deformation description and the vibration theory of flexible structure.Comparison of the deformation accuracy between different models proves that the novel modeling method proposed has high modeling accuracy.Next,the universal approximation property of the Radial Basis Function(RBF)neural network is put forward to determine and compensate for modeling errors,which consist of higher-order modes and the uncertainties of external disturbances.In addition,the tanh function is proposed as the reaching law in the conventional NNSMC strategy to suppress driving torque oscillation.The control law of modified NNSMC strategy and the adaptive law of weight coefficients are developed according to the Lyapunov theorem to guarantee the RSSFS stability.Finally,the simulation and physical experimental tests of the RSSFS with different control strategies are conducted.Experimental results show that the control law according to the novel deformation description and the modified NNSMC strategy can obtain accurate tracking of the rotation and reduce the vibration of the RSSFS simultaneously.
文摘We construct explicitly even and odd q-coherent states.These q-coherent states are introduced in terms of the q-functions defined in the paper.It is shown that the even and odd q-coherent states form a kind of representations of the q-deformed Heisenberg-Weyl algebra which is realized in the form of matrix q-differential operators in the even and odd q-coherent state space.We also analyse some different between the even and odd q-CSs and the usual even and odd CSs.
基金Sponsored by the Western Communication Construction and Science & Technological Project(Grant No.200431882021)the National Science Fundfor Distinguished Young Scholars (Grant No.50525823)
文摘Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was embedded in a 150 mm concrete cube,and the test embedded length was four times of the rebar diameter.Relationship between the mode of failure,the average bond strength and the average bond strength-slip for each rebar was analyzed.Results show that the failure mode of all specimens is the shearing off or desquamation of ribs,no splitting cracks appear on the cube specimens.The bond stress of deformed GFRP rebars mainly depends on the mechanical interaction between the ribs of the bar and the surrounding concrete,and the bond strength of deformed GFRP rebars is improved obviously.The optimal rib spacing is less than 2.5 times of the rebar diameter,and the rib height is more than 3% of the rebar diameter.
基金supported by the National Key Research and Development Project of China(No.2016YFF0200700)the National Natural Science Foundation of China(No.61405111)
文摘Digital speckle pattern interferometry (DSPI) is a high-precision deformation t technique for planar objects. However, for curved objects, the three-dimensional (3D) shape information is needed in order to obtain correct deformation measurement in DSPI. Thus, combined shape and deformation measurement techniques of DSPI have been proposed. However, the current techniques are either complex in setup or complicated in operation. Furthermore, the operations of some techniques are too slow for real-time measurement. In this work, we propose a DSPI technique for both 3D shape and out-of-plane deformation measurement. Compared with current techniques, the proposed technique is simple in both setup and operation and is capable of fast deformation measurement. Theoretical analysis and experiments are performed. For a cylinder surface with an arch height of 9 mm, the error of out-of-plane deformation measurement is less than 0.15 μm. The effectiveness of the proposed scheme is verified.
文摘Our aim in the present article is to introduce and study new types of retractions of Lobachevsky space. Types of the deformation retracts of Lobachevsky space are presented. The relations between the folding and the deformation retract of Lobachevsky space are deduced. Types of minimal retractions of Lobachevsky space are also presented. Also, the isometric and topological folding in each case and the relation between the deformation retracts after and before folding have been obtained. New types of homotopy maps are deduced. Theorems governing this connection are achieved.
文摘Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation between f<sup>-1</sup>(0) and g<sup>-1</sup>(0). And both the Fréchet differentiability and the continuity of Fréchet derivative of every convex functional defined on an open subset of a Banach space are shown.
文摘We will introduce a new connection between some transformations and some aspects of differential geometry of some curves in Minkowski space. The concept of folding, retractions and contraction on some curves in Minkowski space will be characterized by using some aspects of differential geometry. Types of the deformation retracts of some curves in Minkowski 3-space are obtained. The relations between the foldings and the deformation retracts of some curves are deduced. The connections between some transformations and time like, space like, light like of some curves in Minkowski 3-space are also presented.
文摘路面病害自动化检测是实现道路智慧化管养的关键技术之一,针对路面病害图像中病害目标占比小、不同类型病害尺度差异大、背景环境复杂等特性,基于YOLOv8架构,提出聚焦形状特征的路面病害检测算法FSF-YOLO(focusing on shape features YOLO)。构建一种无信息丢失的加强特征提取模块,通过保留多维度空间特征信息,增强骨干网络对低分辨率图像和细小病害目标的特征提取能力;引入可形变注意力特征融合模块,利用病害细长形状特征拓展目标识别区域,提高模型对于长距离病害目标的特征表达能力;运用分组卷积空间金字塔池化模块,强化不同尺寸病害目标特征识别;采用轻量级共享卷积检测头,减少网络参数量和计算量。实验结果表明,提出的方法对不同类别的路面病害目标均获得了较好的效果,在RDD2022数据集上的平均精度达到67.3%,与原算法相比提升了5.3个百分点,整体性能优于其他路面病害检测算法。