With the aid of the micro-mechanical model of knitted fabric proposed in Part 1 we analyze the buckling of a knitted fabric sheet when it is subjected to a tension along the wale direction. The large deformation of th...With the aid of the micro-mechanical model of knitted fabric proposed in Part 1 we analyze the buckling of a knitted fabric sheet when it is subjected to a tension along the wale direction. The large deformation of the fabric sheet in the critical configuration is considered and, to avoid possible deviation due to the approximation of the theory of thin plate, the three-dimensional theory of instability is used. The fabric sheet is considered as a three-dimensional body and all boundary conditions are satisfied. It is shown that the buckling of the fabric sheet is possible, two buckling modes and the corresponding buckling conditions are obtained, but only the flexural mode is physically possible as observed in experiments.展开更多
Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is app...Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.展开更多
The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper.Firstly,the flexural stiffness and torsional stiffness of s...The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper.Firstly,the flexural stiffness and torsional stiffness of space truss arches are deduced.The calculation formula of out-of-plane elastic buckling loads of the space truss arch is derived based on the classical solution of out-of-plane flexural-torsional buckling loads of the solid web arch.However,since the classical solution cannot be used for the calculation of the arch with a small rise-span ratio,the formula for out-of-plane elastic buckling loads of space truss arches subjected to end bending moments is modified.Numerical research of the out-of-plane stability of space truss arches under different load cases shows that the theoretical formula proposed in this paper has good accuracy.Secondly,the design formulas to predict the out-of-plane elastoplastic stability strength of space truss arches subjected to the end bending moment and radial uniform load are presented through introducing a normalized slenderness ratio.By assuming that all components of space truss circular arches bear only axial force,the design formulas to prevent the local buckling of chord and transverse tubes are deduced.Finally,the bearing capacity design equations of space truss arches are proposed under vertical uniform load.展开更多
Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh...Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh form and excellent rigidity. In order to further understand the buckling behaviors of single layer two-way grid cylindrical shell roof with tension members,the buckling experiments have been undertaken to investigate the effect of tension members,in either out-of-plane or in-plane placement. A single layer two-way grid cylindrical shell roof with out-of-plane tension members has been tested under symmetric and asymmetric loading. The tension member placement,the introducing initial axial force to tension members and the load patterns are considered to investigate the buckling behavior. Experimental results indicate that four long out-ofplane tension members work well under symmetrical loading,but only two long out-of-plane tension members work under asymmetrical loading. It can be concluded that the PC bar members used as tension members for this study are useful in the construction of a single layer two-way grid cylindrical shell roof with structural members intersecting at small angles.展开更多
Kirigami metamaterials have gained increasing attention due to their unusual mechanical properties under largestretching.However,most metamaterial designs obtained with trial-and-error approaches tend to lose their de...Kirigami metamaterials have gained increasing attention due to their unusual mechanical properties under largestretching.However,most metamaterial designs obtained with trial-and-error approaches tend to lose their de-sirable properties under large tensile strains due to occurrence of instability caused by out-of-plane buckling.To cope with this limitation,this paper presents a systematic approach of cut layout optimizing for designingkirigami metamaterials working at large tensile strains by fully exploiting their out-of-plane buckling behaviors.This method can also mitigate the local stress concentration issue at the hinges of conventional kirigami designsworking at in-plane deformation modes.The effectiveness of the proposed method is demonstrated through sev-eral examples regarding metamaterial design with negative Poisson’s ratio and specified flip angle pattern.It isshown that the proposed method is capable of addressing the highly nonlinear deformation impacts on the me-chanical performance under large stretching,to meet the growing and diverse demands in the field of kirigamimetamaterials.展开更多
基金The project supported by the National Natural Science Foundation of China(10272079)
文摘With the aid of the micro-mechanical model of knitted fabric proposed in Part 1 we analyze the buckling of a knitted fabric sheet when it is subjected to a tension along the wale direction. The large deformation of the fabric sheet in the critical configuration is considered and, to avoid possible deviation due to the approximation of the theory of thin plate, the three-dimensional theory of instability is used. The fabric sheet is considered as a three-dimensional body and all boundary conditions are satisfied. It is shown that the buckling of the fabric sheet is possible, two buckling modes and the corresponding buckling conditions are obtained, but only the flexural mode is physically possible as observed in experiments.
文摘Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.
基金This study was supported by the National Natural Science Foundation of China(Grant No.51168010).
文摘The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper.Firstly,the flexural stiffness and torsional stiffness of space truss arches are deduced.The calculation formula of out-of-plane elastic buckling loads of the space truss arch is derived based on the classical solution of out-of-plane flexural-torsional buckling loads of the solid web arch.However,since the classical solution cannot be used for the calculation of the arch with a small rise-span ratio,the formula for out-of-plane elastic buckling loads of space truss arches subjected to end bending moments is modified.Numerical research of the out-of-plane stability of space truss arches under different load cases shows that the theoretical formula proposed in this paper has good accuracy.Secondly,the design formulas to predict the out-of-plane elastoplastic stability strength of space truss arches subjected to the end bending moment and radial uniform load are presented through introducing a normalized slenderness ratio.By assuming that all components of space truss circular arches bear only axial force,the design formulas to prevent the local buckling of chord and transverse tubes are deduced.Finally,the bearing capacity design equations of space truss arches are proposed under vertical uniform load.
基金Sponsored by the Postdoctoral Science Foundation of China(Grant No.2015M571422)Heilongjiang Province Postdoctoral Science Foundation(Grant No.LBH-Z14095)"Young Talents"Project of Northeast Agricultural University(Grant No.14QC50)
文摘Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh form and excellent rigidity. In order to further understand the buckling behaviors of single layer two-way grid cylindrical shell roof with tension members,the buckling experiments have been undertaken to investigate the effect of tension members,in either out-of-plane or in-plane placement. A single layer two-way grid cylindrical shell roof with out-of-plane tension members has been tested under symmetric and asymmetric loading. The tension member placement,the introducing initial axial force to tension members and the load patterns are considered to investigate the buckling behavior. Experimental results indicate that four long out-ofplane tension members work well under symmetrical loading,but only two long out-of-plane tension members work under asymmetrical loading. It can be concluded that the PC bar members used as tension members for this study are useful in the construction of a single layer two-way grid cylindrical shell roof with structural members intersecting at small angles.
基金supported by the National Natural Science Foundation of China(Grant Nos.11932006,12202314,12172121,12002118).
文摘Kirigami metamaterials have gained increasing attention due to their unusual mechanical properties under largestretching.However,most metamaterial designs obtained with trial-and-error approaches tend to lose their de-sirable properties under large tensile strains due to occurrence of instability caused by out-of-plane buckling.To cope with this limitation,this paper presents a systematic approach of cut layout optimizing for designingkirigami metamaterials working at large tensile strains by fully exploiting their out-of-plane buckling behaviors.This method can also mitigate the local stress concentration issue at the hinges of conventional kirigami designsworking at in-plane deformation modes.The effectiveness of the proposed method is demonstrated through sev-eral examples regarding metamaterial design with negative Poisson’s ratio and specified flip angle pattern.It isshown that the proposed method is capable of addressing the highly nonlinear deformation impacts on the me-chanical performance under large stretching,to meet the growing and diverse demands in the field of kirigamimetamaterials.