From a combination of Maxwell’s electromagnetism with Planck’s law and the de Broglie hypothesis, we arrive at quantized photonic wave groups whose constant phase velocity is equal to the speed of light c = ω/k and...From a combination of Maxwell’s electromagnetism with Planck’s law and the de Broglie hypothesis, we arrive at quantized photonic wave groups whose constant phase velocity is equal to the speed of light c = ω/k and to their group velocity dω/dk. When we include special relativity expressed in simplest units, we find that, for particulate matter, the square of rest mass , i.e., angular frequency squared minus wave vector squared. This equation separates into a conservative part and a uniform responsive part. A wave function is derived in manifold rank 4, and from it are derived uncertainties and internal motion. The function solves four anomalies in quantum physics: the point particle with prescribed uncertainties;spooky action at a distance;time dependence that is consistent with the uncertainties;and resonant reduction of the wave packet by localization during measurement. A comparison between contradictory mathematical and physical theories leads to similar empirical conclusions because probability amplitudes express hidden variables. The comparison supplies orthodox postulates that are compared to physical principles that formalize the difference. The method is verified by dual harmonics found in quantized quasi-Bloch waves, where the quantum is physical;not axiomatic.展开更多
The advent of Network Function Virtualization(NFV)and Service Function Chains(SFCs)unleashes the power of dynamic creation of network services using Virtual Network Functions(VNFs).This is of great interest to network...The advent of Network Function Virtualization(NFV)and Service Function Chains(SFCs)unleashes the power of dynamic creation of network services using Virtual Network Functions(VNFs).This is of great interest to network operators since poor service quality and resource wastage can potentially hurt their revenue in the long term.However,the study shows with a set of test-bed experiments that packet loss at certain positions(i.e.,different VNFs)in an SFC can cause various degrees of resource wastage and performance degradation because of repeated upstream processing and transmission of retransmitted packets.To overcome this challenge,this study focuses on resource scheduling and deployment of SFCs while considering packet loss positions.This study developed a novel SFC packet dropping cost model and formulated an SFC scheduling problem that aims to minimize overall packet dropping cost as a Mixed-Integer Linear Programming(MILP)and proved that it is NP-hard.In this study,Palos is proposed as an efficient scheme in exploiting the functional characteristics of VNFs and their positions in SFCs for scheduling resources and deployment to optimize packet dropping cost.Extensive experiment results show that Palos can achieve up to 42.73%improvement on packet dropping cost and up to 33.03%reduction on average SFC latency when compared with two other state-of-the-art schemes.展开更多
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic ...Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.展开更多
Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as re...Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as reduction in the lifespan of equipment due to frequent switching and interruption,delay,and stoppage of services may occur.Therefore,applying a machine learning(ML)method,which is possible to automatically judge and classify network-related service anomaly,and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when there are problems such as transmission errors,is required.In this paper,we propose an intelligent packet switching method based on the ML method of classification,which is one of the supervised learning methods,that presents the risk level of abnormal multi-stream occurring in broadcasting gateway equipment based on data.Furthermore,we subdivide the risk levels obtained from classification techniques into probabilities and then derive vectorized representative values for each attribute value of the collected input data and continuously update them.The obtained reference vector value is used for switching judgment through the cosine similarity value between input data obtained when a dangerous situation occurs.In the broadcasting gateway equipment to which the proposed method is applied,it is possible to perform more stable and smarter switching than before by solving problems of reliability and broadcasting accidents of the equipment and can maintain stable video streaming as well.展开更多
In order to storage resource of a radar recognition system, schemes for reducing data storage and for correlation discrimination of radar based on wavelet packets were proposed Experiment results at various signal-t...In order to storage resource of a radar recognition system, schemes for reducing data storage and for correlation discrimination of radar based on wavelet packets were proposed Experiment results at various signal-to-noise ratios were given The given.ability of the reduced data method's validity are supported by experimental results. Using optimal basis can get higher successful recognition rate using rigid wavelet basis.展开更多
The transmission modes of multi-hop and broadcasting for Wireless Sensor Networks(WSN)often make random and unknown transmission delays appear,so multisensor data fusion based ondelayed systems attracts intense attent...The transmission modes of multi-hop and broadcasting for Wireless Sensor Networks(WSN)often make random and unknown transmission delays appear,so multisensor data fusion based ondelayed systems attracts intense attention from lots of researchers.The existing achievements for thedelayed fusion all focus on Out-Of-Sequence Measurements(OOSM)problem which has many dis-advantages such as high communication cost,low computational efficiency,huge computational com-plexity and storage requirement,bad real-time performance and so on.In order to overcome theseproblems occurred in the OOSM fusion,the Out-Of-Sequence Estimates(OOSE)are considered tosolve the delayed fusion for the first time.Different from OOSM which belongs to the centralized fusion,the OOSE scheme transmits local estimates from local sensors to the central processor and is thus thedistributed fusion;thereby,the OOSE fusion can not only avoid the problems suffered in the OOSMfusion but also make the design of fusion algorithm highly simple and easy.Accordingly,a novel optimallinear recursive prediction weighted fusion method is proposed for one-step OOSE problem in this letter.As a tradeoff,its fusion accuracy is slightly lower than that of the OOSM method because the currentOOSM fusion is a smooth estimate and OOSE gets a prediction estimate.But,the smooth result of theOOSE problem also has good fusion accuracy.Performance analysis and computer simulation show thatthe total performance of the proposed one-step OOSE fusion algorithm is better than the current one-step OOSM fusion in the practical tracking systems.展开更多
The propagation of wave packets and its relationship with the subtropical jet was investigated for the period 26 29 January 2008 over southern China using ECMWF Interim re-analysis data. Wave packets propagated from t...The propagation of wave packets and its relationship with the subtropical jet was investigated for the period 26 29 January 2008 over southern China using ECMWF Interim re-analysis data. Wave packets propagated from the north to the south side of an upper front with eastward development along the upper front during this period. Due to the eastward development of propagation, the acceleration of geostrophic westerly winds shifted eastward along the front. There were two primary sources of the propagation of wave packets at around 30°N. The first was the temperature inversion layer below 500 hPa, and the second was baroclinic zones located along the polarward flank of the subtropical jet in the middle and upper troposphere. Most wave packets propagated horizontally from the baroclinic zones and then converged on the zero meridional gradients of zonal winds.展开更多
2-band wavelet packets in L-2 (R-s) were constructed in [3]. In this note, a way to construct bidimensional orthonormal wavelet packets related to the dilation matrix M = ((1)(1) (1)(-1)) is obtained. M-wavelets are u...2-band wavelet packets in L-2 (R-s) were constructed in [3]. In this note, a way to construct bidimensional orthonormal wavelet packets related to the dilation matrix M = ((1)(1) (1)(-1)) is obtained. M-wavelets are used ill quincunx subsampling in two dimensions for image processing. What is more., the approach of this paper can be generalized to construct wavelet packets in L-2 (R-s) related to a general diltion matrix.展开更多
Based on the massive data collected with a passive network monitoring equipment placed in China's backbone, we present a deep insight into the network backbone traffic and evaluate various ways for inproving traffic ...Based on the massive data collected with a passive network monitoring equipment placed in China's backbone, we present a deep insight into the network backbone traffic and evaluate various ways for inproving traffic classifying efficiency in this pa- per. In particular, the study has scrutinized the net- work traffic in terms of protocol types and signatures, flow length, and port distffoution, from which mean- ingful and interesting insights on the current Intemet of China from the perspective of both the packet and flow levels are derived. We show that the classifica- tion efficiency can be greatly irrproved by using the information of preferred ports of the network applica- tions. Quantitatively, we find two traffic duration thresholds, with which 40% of TCP flows and 70% of UDP flows can be excluded from classification pro- cessing while the in^act on classification accuracy is trivial, i.e., the classification accuracy can still reach a high level by saving 85% of the resources.展开更多
The interference between two dissociating wave packets of the I2 molecule driven by femtosecond laser pulses is theoreticaly studied by using the time-dependent quantum wave packet method. Both the internuclear distan...The interference between two dissociating wave packets of the I2 molecule driven by femtosecond laser pulses is theoreticaly studied by using the time-dependent quantum wave packet method. Both the internuclear distance-and velocity-dependent density functions are calculated and discussed. It is demonstrated that the interference pattern is determined by the phase difference and the delay time between two pump pulses. With two identical pulses with a delay time of 305 fs and a FWHM of 20 fs, more interference fringes can be observed, while with two pump pulses with a delay time of 80 fs and a FWHM of 20 fs, only a few interference fringes can be observed.展开更多
Travel-time prediction has gained significance over the years especially in urban areas due to increasing traffic congestion. In this paper, the basic building blocks of the travel-time prediction models are discussed...Travel-time prediction has gained significance over the years especially in urban areas due to increasing traffic congestion. In this paper, the basic building blocks of the travel-time prediction models are discussed, with a small review of the previous work. A model for the travel-time prediction on freeways based on wavelet packet decomposition and support vector regression (WDSVR) is proposed, which used the multi-resolution and equivalent frequency distribution ability of the wavelet transform to train the support vector machines. The results are compared against the classical support vector regression (SVR) method. Our results indicated that the wavelet reconstructed coefficient when used as an input to the support vector machine for regression performed better (with selected wavelets only), when compared with the support vector regression model (without wavelet decomposition) with a prediction horizon of 45 minutes and more. The data used in this paper was taken from the California Department of Transportation (Caltrans) of District 12 with a detector density of 2.73, experiencing daily peak hours except most weekends. The data was stored for a period of 214 days accumulated over 5-minute intervals over a distance of 9.13 miles. The results indicated MAPE ranging from 12.35% to 14.75% against the classical SVR method with MAPE ranging from 12.57% to 15.84% with a prediction horizon of 45 minutes to 1 hour. The basic criteria for selection of wavelet basis for preprocessing the inputs of support vector machines are also explored to filter the set of wavelet families for the WDSVR model. Finally, a configuration of travel-time prediction on freeways is presented with interchangeable prediction methods.展开更多
文摘From a combination of Maxwell’s electromagnetism with Planck’s law and the de Broglie hypothesis, we arrive at quantized photonic wave groups whose constant phase velocity is equal to the speed of light c = ω/k and to their group velocity dω/dk. When we include special relativity expressed in simplest units, we find that, for particulate matter, the square of rest mass , i.e., angular frequency squared minus wave vector squared. This equation separates into a conservative part and a uniform responsive part. A wave function is derived in manifold rank 4, and from it are derived uncertainties and internal motion. The function solves four anomalies in quantum physics: the point particle with prescribed uncertainties;spooky action at a distance;time dependence that is consistent with the uncertainties;and resonant reduction of the wave packet by localization during measurement. A comparison between contradictory mathematical and physical theories leads to similar empirical conclusions because probability amplitudes express hidden variables. The comparison supplies orthodox postulates that are compared to physical principles that formalize the difference. The method is verified by dual harmonics found in quantized quasi-Bloch waves, where the quantum is physical;not axiomatic.
基金supported by the National Natural Science Foundation of China(NSFC)No.62172189 and 61772235the Natural Science Foundation of Guangdong Province No.2020A1515010771+1 种基金the Science and Technology Program of Guangzhou No.202002030372the UK Engineering and Physical Sciences Research Council(EPSRC)grants EP/P004407/2 and EP/P004024/1,and Innovate UK grant 106199-47198.
文摘The advent of Network Function Virtualization(NFV)and Service Function Chains(SFCs)unleashes the power of dynamic creation of network services using Virtual Network Functions(VNFs).This is of great interest to network operators since poor service quality and resource wastage can potentially hurt their revenue in the long term.However,the study shows with a set of test-bed experiments that packet loss at certain positions(i.e.,different VNFs)in an SFC can cause various degrees of resource wastage and performance degradation because of repeated upstream processing and transmission of retransmitted packets.To overcome this challenge,this study focuses on resource scheduling and deployment of SFCs while considering packet loss positions.This study developed a novel SFC packet dropping cost model and formulated an SFC scheduling problem that aims to minimize overall packet dropping cost as a Mixed-Integer Linear Programming(MILP)and proved that it is NP-hard.In this study,Palos is proposed as an efficient scheme in exploiting the functional characteristics of VNFs and their positions in SFCs for scheduling resources and deployment to optimize packet dropping cost.Extensive experiment results show that Palos can achieve up to 42.73%improvement on packet dropping cost and up to 33.03%reduction on average SFC latency when compared with two other state-of-the-art schemes.
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
基金National Key Research and Development Program of China under Grant No.2023YFE0102900National Natural Science Foundation of China under Grant Nos.52378506 and 52208164。
文摘Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.
基金This work was supported by a research grant from Seoul Women’s University(2023-0183).
文摘Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as reduction in the lifespan of equipment due to frequent switching and interruption,delay,and stoppage of services may occur.Therefore,applying a machine learning(ML)method,which is possible to automatically judge and classify network-related service anomaly,and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when there are problems such as transmission errors,is required.In this paper,we propose an intelligent packet switching method based on the ML method of classification,which is one of the supervised learning methods,that presents the risk level of abnormal multi-stream occurring in broadcasting gateway equipment based on data.Furthermore,we subdivide the risk levels obtained from classification techniques into probabilities and then derive vectorized representative values for each attribute value of the collected input data and continuously update them.The obtained reference vector value is used for switching judgment through the cosine similarity value between input data obtained when a dangerous situation occurs.In the broadcasting gateway equipment to which the proposed method is applied,it is possible to perform more stable and smarter switching than before by solving problems of reliability and broadcasting accidents of the equipment and can maintain stable video streaming as well.
文摘In order to storage resource of a radar recognition system, schemes for reducing data storage and for correlation discrimination of radar based on wavelet packets were proposed Experiment results at various signal-to-noise ratios were given The given.ability of the reduced data method's validity are supported by experimental results. Using optimal basis can get higher successful recognition rate using rigid wavelet basis.
基金the National Natural Science Foundation of China(No.60434020,No.60572051)International Coop-erative Project Foundation(No.0446650006)Ministryof Education Science Foundation of China(No.2050 92).
文摘The transmission modes of multi-hop and broadcasting for Wireless Sensor Networks(WSN)often make random and unknown transmission delays appear,so multisensor data fusion based ondelayed systems attracts intense attention from lots of researchers.The existing achievements for thedelayed fusion all focus on Out-Of-Sequence Measurements(OOSM)problem which has many dis-advantages such as high communication cost,low computational efficiency,huge computational com-plexity and storage requirement,bad real-time performance and so on.In order to overcome theseproblems occurred in the OOSM fusion,the Out-Of-Sequence Estimates(OOSE)are considered tosolve the delayed fusion for the first time.Different from OOSM which belongs to the centralized fusion,the OOSE scheme transmits local estimates from local sensors to the central processor and is thus thedistributed fusion;thereby,the OOSE fusion can not only avoid the problems suffered in the OOSMfusion but also make the design of fusion algorithm highly simple and easy.Accordingly,a novel optimallinear recursive prediction weighted fusion method is proposed for one-step OOSE problem in this letter.As a tradeoff,its fusion accuracy is slightly lower than that of the OOSM method because the currentOOSM fusion is a smooth estimate and OOSE gets a prediction estimate.But,the smooth result of theOOSE problem also has good fusion accuracy.Performance analysis and computer simulation show thatthe total performance of the proposed one-step OOSE fusion algorithm is better than the current one-step OOSM fusion in the practical tracking systems.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40930950 and 40921160379)the Chinese Academy of Meteorological Sciences State Key Laboratory of Severe Weather (LaSW+1 种基金Grant No. 2011LASW-A01)the National Basic Research Project of China under Grant No. 2012CB417201
文摘The propagation of wave packets and its relationship with the subtropical jet was investigated for the period 26 29 January 2008 over southern China using ECMWF Interim re-analysis data. Wave packets propagated from the north to the south side of an upper front with eastward development along the upper front during this period. Due to the eastward development of propagation, the acceleration of geostrophic westerly winds shifted eastward along the front. There were two primary sources of the propagation of wave packets at around 30°N. The first was the temperature inversion layer below 500 hPa, and the second was baroclinic zones located along the polarward flank of the subtropical jet in the middle and upper troposphere. Most wave packets propagated horizontally from the baroclinic zones and then converged on the zero meridional gradients of zonal winds.
基金the National Natural Science Foundation (19801005). the Youth Foundation of Beijing. the Natural Science Foundation of Beijing (
文摘2-band wavelet packets in L-2 (R-s) were constructed in [3]. In this note, a way to construct bidimensional orthonormal wavelet packets related to the dilation matrix M = ((1)(1) (1)(-1)) is obtained. M-wavelets are used ill quincunx subsampling in two dimensions for image processing. What is more., the approach of this paper can be generalized to construct wavelet packets in L-2 (R-s) related to a general diltion matrix.
基金This paper was partially supported by the National Natural Science Foundation of China under Crant No. 61072061111 Project of China under Crant No. B08004 the Fundamental Research Funds for the Central Universities under Grant No. 2009RC0122. References
文摘Based on the massive data collected with a passive network monitoring equipment placed in China's backbone, we present a deep insight into the network backbone traffic and evaluate various ways for inproving traffic classifying efficiency in this pa- per. In particular, the study has scrutinized the net- work traffic in terms of protocol types and signatures, flow length, and port distffoution, from which mean- ingful and interesting insights on the current Intemet of China from the perspective of both the packet and flow levels are derived. We show that the classifica- tion efficiency can be greatly irrproved by using the information of preferred ports of the network applica- tions. Quantitatively, we find two traffic duration thresholds, with which 40% of TCP flows and 70% of UDP flows can be excluded from classification pro- cessing while the in^act on classification accuracy is trivial, i.e., the classification accuracy can still reach a high level by saving 85% of the resources.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10674022 and 20633070)
文摘The interference between two dissociating wave packets of the I2 molecule driven by femtosecond laser pulses is theoreticaly studied by using the time-dependent quantum wave packet method. Both the internuclear distance-and velocity-dependent density functions are calculated and discussed. It is demonstrated that the interference pattern is determined by the phase difference and the delay time between two pump pulses. With two identical pulses with a delay time of 305 fs and a FWHM of 20 fs, more interference fringes can be observed, while with two pump pulses with a delay time of 80 fs and a FWHM of 20 fs, only a few interference fringes can be observed.
文摘Travel-time prediction has gained significance over the years especially in urban areas due to increasing traffic congestion. In this paper, the basic building blocks of the travel-time prediction models are discussed, with a small review of the previous work. A model for the travel-time prediction on freeways based on wavelet packet decomposition and support vector regression (WDSVR) is proposed, which used the multi-resolution and equivalent frequency distribution ability of the wavelet transform to train the support vector machines. The results are compared against the classical support vector regression (SVR) method. Our results indicated that the wavelet reconstructed coefficient when used as an input to the support vector machine for regression performed better (with selected wavelets only), when compared with the support vector regression model (without wavelet decomposition) with a prediction horizon of 45 minutes and more. The data used in this paper was taken from the California Department of Transportation (Caltrans) of District 12 with a detector density of 2.73, experiencing daily peak hours except most weekends. The data was stored for a period of 214 days accumulated over 5-minute intervals over a distance of 9.13 miles. The results indicated MAPE ranging from 12.35% to 14.75% against the classical SVR method with MAPE ranging from 12.57% to 15.84% with a prediction horizon of 45 minutes to 1 hour. The basic criteria for selection of wavelet basis for preprocessing the inputs of support vector machines are also explored to filter the set of wavelet families for the WDSVR model. Finally, a configuration of travel-time prediction on freeways is presented with interchangeable prediction methods.