Islanding detection is an essential function for safety and reliability in grid-connected distributed generation (DG) systems. Several methods for islanding detection are proposed, but most of them may fail under mult...Islanding detection is an essential function for safety and reliability in grid-connected distributed generation (DG) systems. Several methods for islanding detection are proposed, but most of them may fail under multi-source configurations, or they may produce important power quality degradation which gets worse with increasing DG penetration. This paper presents an active islanding detection algorithm for Voltage Source Inverter (VSI) based multi-source DG systems. The proposed method is based on the Voltage Positive Feedback (VPF) theory to generate a limited active power perturbation. Theoretical analyses were performed and simulations by MATLAB /Simulink /SimPowerSystems were used to evaluate the algorithm’s performance and its advantages concerning the time response and the effects on power quality, which turned out to be negligible. The algorithm performance was tested under critical conditions: load with unity power factor, load with high quality factor, and load matching DER’s powers.展开更多
Islanding detection is a mandatory component in grid-connected photovoltaic (PV) inverters. It is also a key issue in the photovoltaic agriculture. In this work, an overview on the islanding effect in grid-connected...Islanding detection is a mandatory component in grid-connected photovoltaic (PV) inverters. It is also a key issue in the photovoltaic agriculture. In this work, an overview on the islanding effect in grid-connected PV power systems was provided. Various islanding detection methods were introduced and their strength and weakness were dicussed. An improved islanding detection method was proposed based on active frequency drift (AFD). The new method tolerated capacitive and inductive loads, because its perturbation signal was not offset by the non-resistive load. The new method through simulation in MATLAB/Simulink was evaluated and the advantages of the new method were demonstrated.展开更多
Today, several types of DGs are connected together and formed a small power system called micro-grid (MG). MG is connected to the primary distribution network and usually operates in normal connecting mode. When a sev...Today, several types of DGs are connected together and formed a small power system called micro-grid (MG). MG is connected to the primary distribution network and usually operates in normal connecting mode. When a severe fault occurs in the primary distribution network, then the MG will transfer to islanding mode. In this paper a complete model is developed to simulate the dynamic performance of the MG during and subsequent to islanding process. The model contains of a solid oxide fuel cell (SOFC), a single shaft micro turbine, a flywheel, two photovoltaic panels and a wind generator system. All these micro sources are con-nected to the MG through inverters except the wind generation system. The inverters are modeled with two control strategies. The first strategy is PQ control which the inverter will inject a certain active and reactive powers. This type of inverter is used to interface micro turbine, fuel cell and photovoltaic panels to the MG. The second strategy is Vf control. This model is used to interface flywheel will act as the reference bus (slack bus) for the MG when islanding occurs. Two cases are studied: the first case discusses the effect of islanding process on frequency, voltage and active power of all micro sources when the MG imports active and reactive power from the primary distribution network. The second studied case, also, shows the effect of islanding on the previous quantities particularly when the MG exports active and reactive power to the pri-mary distribution network. Results showed that the existence of storage device (flywheel) with appropriate control of its inverter can keep the frequency of the MG and the voltages of all buses within their limited levels. The developed model is built in Matlab? Simulink? environment.展开更多
The Power Quality (PQ), security, reliability etc., are the prime objectives of the power system. The protection is developed in such a way that it should be selective, fast, reliable and the cost effective. The study...The Power Quality (PQ), security, reliability etc., are the prime objectives of the power system. The protection is developed in such a way that it should be selective, fast, reliable and the cost effective. The study about the islanding protection in Low Voltage (LV) CIGRE distribution and networks like this has been proposed in this paper. This is achieved by developing the protection against the short circuit faults which might appear at the Medium Voltage (MV) bus. The protection of the network with significant penetration of the Distributed Generations (DGs) is a complicated process. The DG units which are directly connected to the grid such as synchronous or induction generators contribute large short power, whereas the DG units which are connected to the grid via inverters carry small amount of the short circuit power. This creates the problems in the protection of the network. If the proper protection coordination measures have not been taken, it might cause the mal-function of the protection devices which put the portion of the power network into the security threats. The selection of the islanding protection devices in this paper is made to protect the network against bi-directional currents at the time of short circuit fault. The LV CIGRE distribution network will enter into islanding if a fault is cleared at the MV bus by the proposed islanding protection devices. It is therefore, essential to detect the islanding in the CIGRE power network. The detection of the island in this network is another major objective of this paper. The detection of the island is proposed by using the technique which is based on the voltage phase angle difference. The simulations are carried out by using DIgSILENT power factory software version 15.0.展开更多
The unintentional islanding of micro-grid may cause negative impacts on distribution loads and distributed generations,so it must be detected within the acceptable duration.In this paper a new islanding detection algo...The unintentional islanding of micro-grid may cause negative impacts on distribution loads and distributed generations,so it must be detected within the acceptable duration.In this paper a new islanding detection algorithm is proposed.This algorithm introduces the frequency feedback method by the reactive power compensation to derive the frequency continuous shift. Accordingly,the islanding can be detected by monitoring the frequency within 0.1 s.The simulation results prove that this algorithm has extremely small non-detection zone,and meanwhile it presents an excellent islanding detection speed as well.展开更多
A control system was developed, which allows on-site generators within a building to operate in islanding mode, in the event of loss of grid supply. The on-site generation included a photovoltaic array and a back-up i...A control system was developed, which allows on-site generators within a building to operate in islanding mode, in the event of loss of grid supply. The on-site generation included a photovoltaic array and a back-up induction generator. Regulation include avoidance of sudden voltage and frequency changes at the transition to islanding mode, maintaining voltage and frequency within limits during islanding, and phase matching when the grid supply is re-established. Possible modes of operation during islanding were photovoltaic array alone, generator alone, or both sources operating in parallel. Control methods were considered for each of these, and the resulting voltage and frequency regulation was anal sized. The results show that voltage and frequency could be kept within limits, except during the transitions to and from islanding. At these times, the transients were minimised.展开更多
Islanding detection is an essential function for safety and reliability in grid-connected Distributed Generation Systems (DGS). Passive and active islanding detection methods have been analyzed in literature consideri...Islanding detection is an essential function for safety and reliability in grid-connected Distributed Generation Systems (DGS). Passive and active islanding detection methods have been analyzed in literature considering DGS with only one inverter connected to the utility. With the big scale application of photovoltaic (PV) power systems, islanding detection technology of multi-inverter DGS has been paid more attention. This paper analyzes the performance of diverse islanding detection methods in multiple inverters grid-connected PV systems. Non-Detection Zones (NDZ) of multi-inverter systems in a load parameter space are used as analytical tool. The paper provides guidance for the islanding detection design in multiple grid-connected inverters.展开更多
Vector shift(VS)is one of the typical methods used for islanding detection in distributed generations.This paper investigates the impact of both the active power imbalance and load variation on VS method.The investiga...Vector shift(VS)is one of the typical methods used for islanding detection in distributed generations.This paper investigates the impact of both the active power imbalance and load variation on VS method.The investigation was conducted via simulation test in the power system dynamic simulation laboratory of Shandong University.The results show that it will take longer time for the VS relay to detect islanding state with the decrease of active power imbalance.In some cases,the vector shift angle is smaller than the setting and VS method would not be able to detect islanding state.In addition,the performance of VS method is impacted by the load variation in normal operation in which the distributed generator is operated in parallel with the main grid.The simulation results show that VS method would cause nuisance tripping if the load changes sharply. It can be summarized that VS method would be unable to reliably discriminate islanding state and normal system disturbances in some cases.展开更多
Technical and economical impacts of distributed resources have encouraged big industry managers and distribution systems’ owners to utilize small type of electric generations. One important preventive issue to develo...Technical and economical impacts of distributed resources have encouraged big industry managers and distribution systems’ owners to utilize small type of electric generations. One important preventive issue to develop these units is islanding situation. Expert diagnosis system is needed to distinguish network cut off from normal occurrences. It should detect islanding in time to disconnect the unit and prevent any additional failures in equipment. An important part of synchronous generator is automatic load-frequency controller (ALFC). This controller is designed properly to respond to load variations and to fix frequency at constant value when working alone as an islanding system and to control output power when operating in parallel with the main. In this paper, a new approach based on monitoring ALFC re-sponse with regard to input signal to governor is introduced. Numbers of initial crossing value are introduced as an index for islanding detection. Simulation results show that input signal to governor has different characteristics in common disturbances.展开更多
This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units d...This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units during grid-connected and islanding operation. Neplan desktop power simulation tool was used for the modelling and simulation of a realistic MV network with four different distributed generation technologies (diesel, gas, hydro and wind) along with their excitation and governor control systems, while an exponential model was used to represent the loads in the network. The dynamic and steady state behavior of the four distributed generation technologies were investigated during grid-connected operation and two transition modes to the islanding situation, planned and unplanned. The obtained results that validated through various case studies have shown that a suitable planned islanding transition could provide support to critical loads at the event of electricity utility outages.展开更多
A grid connected microgrid connects to the grid at a point of common coupling. Due to the great inertia of the grid which accelerates and decelerates the generator when its frequency tends to deviate, the grid connect...A grid connected microgrid connects to the grid at a point of common coupling. Due to the great inertia of the grid which accelerates and decelerates the generator when its frequency tends to deviate, the grid connected microgrid operates at a frequency of the infinity bus. Frequency instability is one of the major challenges facing the grid connected microgrid during islanding. The power demand variation causes the variation in rotor speed, resulting to frequency deviation. Frequency can be brought back to standard by varying the power generation to match with the varying load. The performance of the frequency stability control system at Mwenga hydroelectric microgrid has been studied. Through site visitation, the power demand and generation status data were collected and analysed for model preparation. The results of the study indicate that, during islanding, the Mwenga rural electrification project is observed to be subjected to power imbalance which leads to frequency instability. Although the frequency control system tries to keep the system at a nominal frequency by maintaining the continuous balance between generation and varying load demand, however the system still operates with large magnitude of overshoot, undershoot and longer settling time.展开更多
DEAR EDITOR,The macaques belongs to the genus Macaca,consisting of at least 23 species(Roos et al.,2019).Among all congeners,rhesus macaque(M.mulatta)is regarded as the widest distributed non-human primate species in ...DEAR EDITOR,The macaques belongs to the genus Macaca,consisting of at least 23 species(Roos et al.,2019).Among all congeners,rhesus macaque(M.mulatta)is regarded as the widest distributed non-human primate species in the world.Its native range spans in East Asia,northern part of Southeast Asia and Indian subcontinent(Liu et al.,2018).Listed as“Least Concern”on the IUCN Red List,this species is locally threatened due to habitat loss and degradation in China and Thailand(Lu et al.,2018).Nevertheless,pet release resulting in hybridization with other congeners(e.g.,rhesus macaque×crab-eating macaque(M.fascicularis))was documented in Hong Kong SAR,China(Wong&Ni,2000),threatening genetic integrity of wild populations.展开更多
Unintentional islanding phenomenon has been one of the most important problems of gridconnected photovoltaic inverters. To prevent this phenomenon, all kinds of anti-islanding methods have been discussed. This paper p...Unintentional islanding phenomenon has been one of the most important problems of gridconnected photovoltaic inverters. To prevent this phenomenon, all kinds of anti-islanding methods have been discussed. This paper presents a combined active islanding detection method, which consists of active frequency drift method and automatic phase-shift method. The traditional active anti-islanding methods of grid-connected PV inverters bear nondetection zone possibilities for certain paralleled RLC loads. The combined method shows islanding detection ability effectively, and it can eliminate nondetection zones even in the worst case conditions. Simulation in different load conditions is performed for verification.展开更多
Due to the increased penetration of multi-inverter distributed generation(DG)systems,different DG technologies,inverter control methods,and other inverter functions are challenging the capabilities of islanding detect...Due to the increased penetration of multi-inverter distributed generation(DG)systems,different DG technologies,inverter control methods,and other inverter functions are challenging the capabilities of islanding detection.In addition,multi-inverter networks connecting the distribution system point of common coupling(PCC)create islanding at paralleling inverters,which adds the vulnerability of islanding detection.Furthermore,available islanding detection must overcome more challenges from non-detection zones(NDZs)under reduced power mismatches.Therefore,in this study,a new method called parameter self-adapting active islanding detection was utilized to minimize the dilution effect and reduce NDZs in multi-inverter power systems.The method utilizes an active frequency drift(AFD)method and applies a positive feedback gain of adoption parameters,which significantly minimizes NDZs at parallel inverters.The simulation and experimental outcomes indicate that the proposed method can effectively weaken the dilution effect in multi-inverter networks connecting the distribution system PCC.展开更多
Nowadays, the DC distribution system has been suggested, as a replacement for the AC power distribution system with electric propulsion. This idea signifies a fresh approach of issuing energy for low-voltage installat...Nowadays, the DC distribution system has been suggested, as a replacement for the AC power distribution system with electric propulsion. This idea signifies a fresh approach of issuing energy for low-voltage installations. It can be used for any electrical application up to 20 MW and works at a nominal voltage of 1000 V DC. The DC distribution system is just an extension of the multiple DC links that previously available in all propulsion and thruster drives, which typically comprise more than 80% of the electrical power consumption on electric propulsion vessels. A fault detection and islanding scheme for DC grid connected PV system is presented in this paper. Unlike traditional ac distribution systems, protection has been challenging for dc systems. The goals of this paper are to classify and detect the fault in the PV system as well as DC grid and to isolate the faulted section so that the system keeps operating without disabling the entire system. The results show the measured values of power at PV panel and DC grid side under different fault condition, which indicates the type of fault that occurs in the system.展开更多
In this study, the authors aim to develop the interconnection inverter ofPV (photovoltaic generation) system with FRT (fault ride thorough) function and islanding detection function, and analyze the interaction be...In this study, the authors aim to develop the interconnection inverter ofPV (photovoltaic generation) system with FRT (fault ride thorough) function and islanding detection function, and analyze the interaction between the both functions during the momentary voltage drop by using an analytical model of distribution system interconnected plural PV systems. Moreover, the authors propose a cooperated control method of the inverters ~vith the islanding detection function and FRT function, and carry out a numerical calculation in order to verify the validity of the proposed method.展开更多
Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how ...Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative.展开更多
The South China Sea is a hotspot for regional climate research.Over the past 40 years,considerable improvement has been made in the development and utilization of the islands in the South China Sea,leading to a substa...The South China Sea is a hotspot for regional climate research.Over the past 40 years,considerable improvement has been made in the development and utilization of the islands in the South China Sea,leading to a substantial change in the land-use of the islands.However,research on the impact of human development on the local climate of these islands is lacking.This study analyzed the characteristics of local climate changes on the islands in the South China Sea based on data from the Yongxing Island Observation Station and ERA5 re-analysis.Furthermore,the influence of urbanization on the local climate of the South China Sea islands was explored in this study.The findings revealed that the 10-year average temperature in Yongxing Island increased by approximately 1.11℃from 1961 to 2020,and the contribution of island development and urbanization to the local warming rate over 60 years was approximately 36.2%.The linear increasing trend of the annual hot days from 1961–2020 was approximately 14.84 days per decade.The diurnal temperature range exhibited an increasing trend of 0.05℃per decade,whereas the number of cold days decreased by 1.06days per decade.The rapid increase in construction on Yongxing Island from 2005 to 2021 led to a decrease in observed surface wind speed by 0.32 m s^(-1)per decade.Consequently,the number of days with strong winds decreased,whereas the number of days with weak winds increased.Additionally,relative humidity exhibited a rapid decline from 2001 to 2016 and then rebounded.The study also found substantial differences between the ERA5 re-analysis and observation data,particularly in wind speed and relative humidity,indicating that the use of re-analysis data for climate resource assessment and climate change evaluation on island areas may not be feasible.展开更多
On J-TEXT,the temporal evolution of heat flux distribution on the high-field side(HFS)divertor plate has been measured by an infrared(IR)camera during the plasma operation with an island divertor configuration.In expe...On J-TEXT,the temporal evolution of heat flux distribution on the high-field side(HFS)divertor plate has been measured by an infrared(IR)camera during the plasma operation with an island divertor configuration.In experiments,the island divertor configuration is an edge magnetic island chain structure surrounded by stochastic layers,which can be induced by resonant magnetic perturbations(RMPs).The experimental results show that the heat flux distribution on the HFS target plate depends significantly on the edge magnetic topology.Furthermore,the impact of hydrogen fueling using supersonic molecular beam injection(SMBI)on the divertor heat flux distributions is studied on J-TEXT with an island divertor configuration.It has been observed that power detachment can be achieved when the radiation front approaches the last closed flux surface(LCFS)after each SMBI pulse.This result may provide a method of access for divertor detachment on a fusion device with a three-dimensional(3D)boundary magnetic structure.展开更多
Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive p...Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive power injecting into a grid but also implements other importance duties as well. In this study, negative-sequence current injection has been fulfilled in three-phase power electronic interface for two important duties besides injecting reference power into utility grids. The first one is for islanding detection, and the other one is to enhance unbalance-fault ride-through capability of dispersed generation. This paper introduces a mechanism of negative-sequence injection based on controlling two separate coordinates of dq-control and explains the effect of negative-sequence injection in limiting the unbalanced currents generated from a dispersed generation. Using adaptive notch filter as a signal processing unit for the three-phase system, negative-sequence components are observed. The performance of entire control system is evaluated by time domain simulations, PSCAD/EMTDC (power systems computer aided design/electromagnetic transients including DC).展开更多
文摘Islanding detection is an essential function for safety and reliability in grid-connected distributed generation (DG) systems. Several methods for islanding detection are proposed, but most of them may fail under multi-source configurations, or they may produce important power quality degradation which gets worse with increasing DG penetration. This paper presents an active islanding detection algorithm for Voltage Source Inverter (VSI) based multi-source DG systems. The proposed method is based on the Voltage Positive Feedback (VPF) theory to generate a limited active power perturbation. Theoretical analyses were performed and simulations by MATLAB /Simulink /SimPowerSystems were used to evaluate the algorithm’s performance and its advantages concerning the time response and the effects on power quality, which turned out to be negligible. The algorithm performance was tested under critical conditions: load with unity power factor, load with high quality factor, and load matching DER’s powers.
基金Supported by the National Science and Technology Support Program(2014BAD06B04-1-09)China Postdoctoral Fund(2016M601406)Heilongjiang Postdoctoral Fund(LBHZ15024)
文摘Islanding detection is a mandatory component in grid-connected photovoltaic (PV) inverters. It is also a key issue in the photovoltaic agriculture. In this work, an overview on the islanding effect in grid-connected PV power systems was provided. Various islanding detection methods were introduced and their strength and weakness were dicussed. An improved islanding detection method was proposed based on active frequency drift (AFD). The new method tolerated capacitive and inductive loads, because its perturbation signal was not offset by the non-resistive load. The new method through simulation in MATLAB/Simulink was evaluated and the advantages of the new method were demonstrated.
文摘Today, several types of DGs are connected together and formed a small power system called micro-grid (MG). MG is connected to the primary distribution network and usually operates in normal connecting mode. When a severe fault occurs in the primary distribution network, then the MG will transfer to islanding mode. In this paper a complete model is developed to simulate the dynamic performance of the MG during and subsequent to islanding process. The model contains of a solid oxide fuel cell (SOFC), a single shaft micro turbine, a flywheel, two photovoltaic panels and a wind generator system. All these micro sources are con-nected to the MG through inverters except the wind generation system. The inverters are modeled with two control strategies. The first strategy is PQ control which the inverter will inject a certain active and reactive powers. This type of inverter is used to interface micro turbine, fuel cell and photovoltaic panels to the MG. The second strategy is Vf control. This model is used to interface flywheel will act as the reference bus (slack bus) for the MG when islanding occurs. Two cases are studied: the first case discusses the effect of islanding process on frequency, voltage and active power of all micro sources when the MG imports active and reactive power from the primary distribution network. The second studied case, also, shows the effect of islanding on the previous quantities particularly when the MG exports active and reactive power to the pri-mary distribution network. Results showed that the existence of storage device (flywheel) with appropriate control of its inverter can keep the frequency of the MG and the voltages of all buses within their limited levels. The developed model is built in Matlab? Simulink? environment.
文摘The Power Quality (PQ), security, reliability etc., are the prime objectives of the power system. The protection is developed in such a way that it should be selective, fast, reliable and the cost effective. The study about the islanding protection in Low Voltage (LV) CIGRE distribution and networks like this has been proposed in this paper. This is achieved by developing the protection against the short circuit faults which might appear at the Medium Voltage (MV) bus. The protection of the network with significant penetration of the Distributed Generations (DGs) is a complicated process. The DG units which are directly connected to the grid such as synchronous or induction generators contribute large short power, whereas the DG units which are connected to the grid via inverters carry small amount of the short circuit power. This creates the problems in the protection of the network. If the proper protection coordination measures have not been taken, it might cause the mal-function of the protection devices which put the portion of the power network into the security threats. The selection of the islanding protection devices in this paper is made to protect the network against bi-directional currents at the time of short circuit fault. The LV CIGRE distribution network will enter into islanding if a fault is cleared at the MV bus by the proposed islanding protection devices. It is therefore, essential to detect the islanding in the CIGRE power network. The detection of the island in this network is another major objective of this paper. The detection of the island is proposed by using the technique which is based on the voltage phase angle difference. The simulations are carried out by using DIgSILENT power factory software version 15.0.
基金National High-Tech R&D Program of China(No.2007AA05Z241).
文摘The unintentional islanding of micro-grid may cause negative impacts on distribution loads and distributed generations,so it must be detected within the acceptable duration.In this paper a new islanding detection algorithm is proposed.This algorithm introduces the frequency feedback method by the reactive power compensation to derive the frequency continuous shift. Accordingly,the islanding can be detected by monitoring the frequency within 0.1 s.The simulation results prove that this algorithm has extremely small non-detection zone,and meanwhile it presents an excellent islanding detection speed as well.
文摘A control system was developed, which allows on-site generators within a building to operate in islanding mode, in the event of loss of grid supply. The on-site generation included a photovoltaic array and a back-up induction generator. Regulation include avoidance of sudden voltage and frequency changes at the transition to islanding mode, maintaining voltage and frequency within limits during islanding, and phase matching when the grid supply is re-established. Possible modes of operation during islanding were photovoltaic array alone, generator alone, or both sources operating in parallel. Control methods were considered for each of these, and the resulting voltage and frequency regulation was anal sized. The results show that voltage and frequency could be kept within limits, except during the transitions to and from islanding. At these times, the transients were minimised.
文摘Islanding detection is an essential function for safety and reliability in grid-connected Distributed Generation Systems (DGS). Passive and active islanding detection methods have been analyzed in literature considering DGS with only one inverter connected to the utility. With the big scale application of photovoltaic (PV) power systems, islanding detection technology of multi-inverter DGS has been paid more attention. This paper analyzes the performance of diverse islanding detection methods in multiple inverters grid-connected PV systems. Non-Detection Zones (NDZ) of multi-inverter systems in a load parameter space are used as analytical tool. The paper provides guidance for the islanding detection design in multiple grid-connected inverters.
文摘Vector shift(VS)is one of the typical methods used for islanding detection in distributed generations.This paper investigates the impact of both the active power imbalance and load variation on VS method.The investigation was conducted via simulation test in the power system dynamic simulation laboratory of Shandong University.The results show that it will take longer time for the VS relay to detect islanding state with the decrease of active power imbalance.In some cases,the vector shift angle is smaller than the setting and VS method would not be able to detect islanding state.In addition,the performance of VS method is impacted by the load variation in normal operation in which the distributed generator is operated in parallel with the main grid.The simulation results show that VS method would cause nuisance tripping if the load changes sharply. It can be summarized that VS method would be unable to reliably discriminate islanding state and normal system disturbances in some cases.
文摘Technical and economical impacts of distributed resources have encouraged big industry managers and distribution systems’ owners to utilize small type of electric generations. One important preventive issue to develop these units is islanding situation. Expert diagnosis system is needed to distinguish network cut off from normal occurrences. It should detect islanding in time to disconnect the unit and prevent any additional failures in equipment. An important part of synchronous generator is automatic load-frequency controller (ALFC). This controller is designed properly to respond to load variations and to fix frequency at constant value when working alone as an islanding system and to control output power when operating in parallel with the main. In this paper, a new approach based on monitoring ALFC re-sponse with regard to input signal to governor is introduced. Numbers of initial crossing value are introduced as an index for islanding detection. Simulation results show that input signal to governor has different characteristics in common disturbances.
文摘This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units during grid-connected and islanding operation. Neplan desktop power simulation tool was used for the modelling and simulation of a realistic MV network with four different distributed generation technologies (diesel, gas, hydro and wind) along with their excitation and governor control systems, while an exponential model was used to represent the loads in the network. The dynamic and steady state behavior of the four distributed generation technologies were investigated during grid-connected operation and two transition modes to the islanding situation, planned and unplanned. The obtained results that validated through various case studies have shown that a suitable planned islanding transition could provide support to critical loads at the event of electricity utility outages.
文摘A grid connected microgrid connects to the grid at a point of common coupling. Due to the great inertia of the grid which accelerates and decelerates the generator when its frequency tends to deviate, the grid connected microgrid operates at a frequency of the infinity bus. Frequency instability is one of the major challenges facing the grid connected microgrid during islanding. The power demand variation causes the variation in rotor speed, resulting to frequency deviation. Frequency can be brought back to standard by varying the power generation to match with the varying load. The performance of the frequency stability control system at Mwenga hydroelectric microgrid has been studied. Through site visitation, the power demand and generation status data were collected and analysed for model preparation. The results of the study indicate that, during islanding, the Mwenga rural electrification project is observed to be subjected to power imbalance which leads to frequency instability. Although the frequency control system tries to keep the system at a nominal frequency by maintaining the continuous balance between generation and varying load demand, however the system still operates with large magnitude of overshoot, undershoot and longer settling time.
基金supported by Shenzhen Municipal Science&Technology Innovation Committee(JCYJ20180504170040910)Urban Administration&Law Enforcement Bureau of Shenzhen Municipality(201802)。
文摘DEAR EDITOR,The macaques belongs to the genus Macaca,consisting of at least 23 species(Roos et al.,2019).Among all congeners,rhesus macaque(M.mulatta)is regarded as the widest distributed non-human primate species in the world.Its native range spans in East Asia,northern part of Southeast Asia and Indian subcontinent(Liu et al.,2018).Listed as“Least Concern”on the IUCN Red List,this species is locally threatened due to habitat loss and degradation in China and Thailand(Lu et al.,2018).Nevertheless,pet release resulting in hybridization with other congeners(e.g.,rhesus macaque×crab-eating macaque(M.fascicularis))was documented in Hong Kong SAR,China(Wong&Ni,2000),threatening genetic integrity of wild populations.
文摘Unintentional islanding phenomenon has been one of the most important problems of gridconnected photovoltaic inverters. To prevent this phenomenon, all kinds of anti-islanding methods have been discussed. This paper presents a combined active islanding detection method, which consists of active frequency drift method and automatic phase-shift method. The traditional active anti-islanding methods of grid-connected PV inverters bear nondetection zone possibilities for certain paralleled RLC loads. The combined method shows islanding detection ability effectively, and it can eliminate nondetection zones even in the worst case conditions. Simulation in different load conditions is performed for verification.
基金supported by the National Natural Science Foundation of China under Grant No.61671109.
文摘Due to the increased penetration of multi-inverter distributed generation(DG)systems,different DG technologies,inverter control methods,and other inverter functions are challenging the capabilities of islanding detection.In addition,multi-inverter networks connecting the distribution system point of common coupling(PCC)create islanding at paralleling inverters,which adds the vulnerability of islanding detection.Furthermore,available islanding detection must overcome more challenges from non-detection zones(NDZs)under reduced power mismatches.Therefore,in this study,a new method called parameter self-adapting active islanding detection was utilized to minimize the dilution effect and reduce NDZs in multi-inverter power systems.The method utilizes an active frequency drift(AFD)method and applies a positive feedback gain of adoption parameters,which significantly minimizes NDZs at parallel inverters.The simulation and experimental outcomes indicate that the proposed method can effectively weaken the dilution effect in multi-inverter networks connecting the distribution system PCC.
文摘Nowadays, the DC distribution system has been suggested, as a replacement for the AC power distribution system with electric propulsion. This idea signifies a fresh approach of issuing energy for low-voltage installations. It can be used for any electrical application up to 20 MW and works at a nominal voltage of 1000 V DC. The DC distribution system is just an extension of the multiple DC links that previously available in all propulsion and thruster drives, which typically comprise more than 80% of the electrical power consumption on electric propulsion vessels. A fault detection and islanding scheme for DC grid connected PV system is presented in this paper. Unlike traditional ac distribution systems, protection has been challenging for dc systems. The goals of this paper are to classify and detect the fault in the PV system as well as DC grid and to isolate the faulted section so that the system keeps operating without disabling the entire system. The results show the measured values of power at PV panel and DC grid side under different fault condition, which indicates the type of fault that occurs in the system.
文摘In this study, the authors aim to develop the interconnection inverter ofPV (photovoltaic generation) system with FRT (fault ride thorough) function and islanding detection function, and analyze the interaction between the both functions during the momentary voltage drop by using an analytical model of distribution system interconnected plural PV systems. Moreover, the authors propose a cooperated control method of the inverters ~vith the islanding detection function and FRT function, and carry out a numerical calculation in order to verify the validity of the proposed method.
基金Under the auspices of National Key Research and Development Program of China (No.2022YFC3103103)。
文摘Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative.
基金National Natural Science Foundation of China(U21A6001,42075059)Specific Research Fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202143)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)Science and Technology Project of Guangdong Meteorological Service(GRMC2020M29)。
文摘The South China Sea is a hotspot for regional climate research.Over the past 40 years,considerable improvement has been made in the development and utilization of the islands in the South China Sea,leading to a substantial change in the land-use of the islands.However,research on the impact of human development on the local climate of these islands is lacking.This study analyzed the characteristics of local climate changes on the islands in the South China Sea based on data from the Yongxing Island Observation Station and ERA5 re-analysis.Furthermore,the influence of urbanization on the local climate of the South China Sea islands was explored in this study.The findings revealed that the 10-year average temperature in Yongxing Island increased by approximately 1.11℃from 1961 to 2020,and the contribution of island development and urbanization to the local warming rate over 60 years was approximately 36.2%.The linear increasing trend of the annual hot days from 1961–2020 was approximately 14.84 days per decade.The diurnal temperature range exhibited an increasing trend of 0.05℃per decade,whereas the number of cold days decreased by 1.06days per decade.The rapid increase in construction on Yongxing Island from 2005 to 2021 led to a decrease in observed surface wind speed by 0.32 m s^(-1)per decade.Consequently,the number of days with strong winds decreased,whereas the number of days with weak winds increased.Additionally,relative humidity exhibited a rapid decline from 2001 to 2016 and then rebounded.The study also found substantial differences between the ERA5 re-analysis and observation data,particularly in wind speed and relative humidity,indicating that the use of re-analysis data for climate resource assessment and climate change evaluation on island areas may not be feasible.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(No.2018YFE0309103)National Natural Science Foundation of China(Nos.12305243 and 51821005)。
文摘On J-TEXT,the temporal evolution of heat flux distribution on the high-field side(HFS)divertor plate has been measured by an infrared(IR)camera during the plasma operation with an island divertor configuration.In experiments,the island divertor configuration is an edge magnetic island chain structure surrounded by stochastic layers,which can be induced by resonant magnetic perturbations(RMPs).The experimental results show that the heat flux distribution on the HFS target plate depends significantly on the edge magnetic topology.Furthermore,the impact of hydrogen fueling using supersonic molecular beam injection(SMBI)on the divertor heat flux distributions is studied on J-TEXT with an island divertor configuration.It has been observed that power detachment can be achieved when the radiation front approaches the last closed flux surface(LCFS)after each SMBI pulse.This result may provide a method of access for divertor detachment on a fusion device with a three-dimensional(3D)boundary magnetic structure.
文摘Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive power injecting into a grid but also implements other importance duties as well. In this study, negative-sequence current injection has been fulfilled in three-phase power electronic interface for two important duties besides injecting reference power into utility grids. The first one is for islanding detection, and the other one is to enhance unbalance-fault ride-through capability of dispersed generation. This paper introduces a mechanism of negative-sequence injection based on controlling two separate coordinates of dq-control and explains the effect of negative-sequence injection in limiting the unbalanced currents generated from a dispersed generation. Using adaptive notch filter as a signal processing unit for the three-phase system, negative-sequence components are observed. The performance of entire control system is evaluated by time domain simulations, PSCAD/EMTDC (power systems computer aided design/electromagnetic transients including DC).