Affected by many involved factors, different dimensions, data with large difference, incomplete information and so on, the most optimal selection of regional outburst prevention measures for outburst mine has become a...Affected by many involved factors, different dimensions, data with large difference, incomplete information and so on, the most optimal selection of regional outburst prevention measures for outburst mine has become a complicated system project. The traditional way of outburst prevention measure selection belongs to qualitative method, which may cause high-cost of gas control, huge quantities of drilling work, long construction time and even secondary disaster. To solve the above-mentioned problems, in light of occurrence status of coal seam gas in No. 21 mining area of Jinzhushan Tuzhu Mine, through grey fixed weight clustering theory and a combination method of qualitative and quantitative analysis, the judging model with multi-objective classification for optimization of outburst prevention measures was established. The three weight coefficients of outburst prevention technology scheme are sorted, in order to determine the advantages and disadvantages of each outburst prevention technology scheme under the comprehensive evaluation of multi-target. Finally, the problem of quantitative selection for regional outburst prevention technology scheme is solved under the situation of multi-factor mode and incomplete information, which provides reasonable and effective technical measures for prevention of coal and gas outburst disaster.展开更多
In order to reduce the occurrence of coal and gas outburst accidents, and improve the capability to prevent gas hazards and realize the safe and efficient mining of coal enterprises. The distribution of the outburst c...In order to reduce the occurrence of coal and gas outburst accidents, and improve the capability to prevent gas hazards and realize the safe and efficient mining of coal enterprises. The distribution of the outburst coal mining area of Guizhou Province and the status of coal and gas outburst and the problems in the current outburst prevention methods were analyzed. The main issues were pointed out such as the lack of regional outburst prevention measures, unsatisfactory effect in drainage, poor management and implementation, as well as personnel that need more training. The prevention situation of coal and gas outburst in Guizhou Province was considered. In accordance with the above problems, from the perspective of strengthening geological exploration, testing coal seam parameters, studying outburst prevention technologies, deploying mining systems rationally, improving mine safety management systems, and strengthening protection facilities and other aspects, a targeted outburst prevention measure and proposals were put forward.展开更多
The advantages and disadvantages of various outburst prevention measures inheading face were analyzed.The mechanism of outburst prevention about hydraulic extrusionmeasure was studied, the technological parameters wer...The advantages and disadvantages of various outburst prevention measures inheading face were analyzed.The mechanism of outburst prevention about hydraulic extrusionmeasure was studied, the technological parameters were introduced, and the effectof outburst prevention was investigated.The in-situ experimental results show that thehydraulic extrusion measures are applied in serious outburst mine, not only the stress ofstimulate outburst is eliminated effectively but also the gas in coal seam is released efficiently,the measures get obvious effect on coal and gas outburst prevention, and theroadway driving speed is increased by 1.5 times, implementing a safe and rapid excavation.展开更多
Measured to control serious coal-gas outburst in coal seam were analyzed by theory and experimented in test site.A new technique to distress the coal-bed and drain methane,called hydraulic slotting,was described in de...Measured to control serious coal-gas outburst in coal seam were analyzed by theory and experimented in test site.A new technique to distress the coal-bed and drain methane,called hydraulic slotting,was described in detail,and the mechanism of hydrau- lic slotting was put forward and analyzed.The characteristic parameter of hydraulic slotting was given in Jiaozuo mining area and the characteristic of validity,adaptability and secu- rity was evaluated.The results show that the stress surrounding the strata and the gas in coal seam is released efficiently and thoroughly while new techniques are taken,as slot- ting at heading face by high pressure large diameter jet.The resistance to coal and gas outbursts is increased dramatically once the area of slotting is increased to a certain size. In the process of driving 2 000 m tunnel by hydraulic slotting excavation,coal and gas outburst never occurre.The technique could be used to prevent and control potential coal-gas outburst in the proceeding of tunnel driving,and the speed tunneling could be as high as more than 2 times.展开更多
Coal and gas outbursts compromise two-phase gas-solid mixtures as they propagate as shock waves and flows from their sources.Propagation is influenced by the form of the outburst,proximity to source,the structure and ...Coal and gas outbursts compromise two-phase gas-solid mixtures as they propagate as shock waves and flows from their sources.Propagation is influenced by the form of the outburst,proximity to source,the structure and form of the transmitting roadways and the influence of obstacles.The following characterizes the propagation of coal and gas outbursts as two-phase gas-solid flows proximal to source where the coupled effects of pulverized coal and gas flows dominate behavior.The characteristics of shock wave propagation and attenuation were systematically examined for varied roadway geometries using experiments and numerical models.The results demonstrate that the geometry of roadway obstructions is significant and may result in partial compression and sometimes secondary overpressurization in blocked and small comer roadways leading to significant attenuation of outburst shock waves.The shock waves attenuate slowly in both straight and abruptly expanding roadways and more significantly in T-shaped roadways.The most significant attenuation appears in small angle comers and bifurcations in roadways with the largest attenuation occurring in blocked roadways.These results provide basic parameters for simplifying transport in complex roadway networks in the far-field,and guidance for the design of coal and gas outburst prevention facilities and emergency rescue.展开更多
Road tunnel excavation often traverses coal strata, which is at risk of firedamp explosion that usually results in disaster. Airtight concrete grouting is popularly used in this kind of tunnel project. Based on the es...Road tunnel excavation often traverses coal strata, which is at risk of firedamp explosion that usually results in disaster. Airtight concrete grouting is popularly used in this kind of tunnel project. Based on the essential theory of mechanics of fluids in porous media, the principle of improving concrete airtight property and its influential factors are investigated. The proportioning tests and monitoring method for airtight concrete are introduced, which is illustrated by a case study applied to the project of the Huayinshan Tunnel. It is proved by engineering practices that the achievement of this research work is beneficial to tunneling project across coal strata.展开更多
文摘Affected by many involved factors, different dimensions, data with large difference, incomplete information and so on, the most optimal selection of regional outburst prevention measures for outburst mine has become a complicated system project. The traditional way of outburst prevention measure selection belongs to qualitative method, which may cause high-cost of gas control, huge quantities of drilling work, long construction time and even secondary disaster. To solve the above-mentioned problems, in light of occurrence status of coal seam gas in No. 21 mining area of Jinzhushan Tuzhu Mine, through grey fixed weight clustering theory and a combination method of qualitative and quantitative analysis, the judging model with multi-objective classification for optimization of outburst prevention measures was established. The three weight coefficients of outburst prevention technology scheme are sorted, in order to determine the advantages and disadvantages of each outburst prevention technology scheme under the comprehensive evaluation of multi-target. Finally, the problem of quantitative selection for regional outburst prevention technology scheme is solved under the situation of multi-factor mode and incomplete information, which provides reasonable and effective technical measures for prevention of coal and gas outburst disaster.
文摘In order to reduce the occurrence of coal and gas outburst accidents, and improve the capability to prevent gas hazards and realize the safe and efficient mining of coal enterprises. The distribution of the outburst coal mining area of Guizhou Province and the status of coal and gas outburst and the problems in the current outburst prevention methods were analyzed. The main issues were pointed out such as the lack of regional outburst prevention measures, unsatisfactory effect in drainage, poor management and implementation, as well as personnel that need more training. The prevention situation of coal and gas outburst in Guizhou Province was considered. In accordance with the above problems, from the perspective of strengthening geological exploration, testing coal seam parameters, studying outburst prevention technologies, deploying mining systems rationally, improving mine safety management systems, and strengthening protection facilities and other aspects, a targeted outburst prevention measure and proposals were put forward.
文摘The advantages and disadvantages of various outburst prevention measures inheading face were analyzed.The mechanism of outburst prevention about hydraulic extrusionmeasure was studied, the technological parameters were introduced, and the effectof outburst prevention was investigated.The in-situ experimental results show that thehydraulic extrusion measures are applied in serious outburst mine, not only the stress ofstimulate outburst is eliminated effectively but also the gas in coal seam is released efficiently,the measures get obvious effect on coal and gas outburst prevention, and theroadway driving speed is increased by 1.5 times, implementing a safe and rapid excavation.
基金National Nature Science Foundation of China(50534070)International Science and Technology Cooperation and Communion Key Project of Ministry Science and Technology of China(2005DFA61030)+1 种基金Natural Science Foundation of Henan Province(200510460014)Coal Mine Gas and Fire Prevention and Control Key Laboratory Foundation of Henan Province(HKLGF200708)
文摘Measured to control serious coal-gas outburst in coal seam were analyzed by theory and experimented in test site.A new technique to distress the coal-bed and drain methane,called hydraulic slotting,was described in detail,and the mechanism of hydrau- lic slotting was put forward and analyzed.The characteristic parameter of hydraulic slotting was given in Jiaozuo mining area and the characteristic of validity,adaptability and secu- rity was evaluated.The results show that the stress surrounding the strata and the gas in coal seam is released efficiently and thoroughly while new techniques are taken,as slot- ting at heading face by high pressure large diameter jet.The resistance to coal and gas outbursts is increased dramatically once the area of slotting is increased to a certain size. In the process of driving 2 000 m tunnel by hydraulic slotting excavation,coal and gas outburst never occurre.The technique could be used to prevent and control potential coal-gas outburst in the proceeding of tunnel driving,and the speed tunneling could be as high as more than 2 times.
基金the State Key Research Development Program of China(Grant No.2018YFC0808101)the National Natural Science Foundation of China(51774292,51874314,51604278,51804312)the Yue Qi Distinguished Scholar Project,China University of Mining&Technology,Beijing,the Yue Qi Young Scholar Project,China University of Mining&Technology,Beijing.
文摘Coal and gas outbursts compromise two-phase gas-solid mixtures as they propagate as shock waves and flows from their sources.Propagation is influenced by the form of the outburst,proximity to source,the structure and form of the transmitting roadways and the influence of obstacles.The following characterizes the propagation of coal and gas outbursts as two-phase gas-solid flows proximal to source where the coupled effects of pulverized coal and gas flows dominate behavior.The characteristics of shock wave propagation and attenuation were systematically examined for varied roadway geometries using experiments and numerical models.The results demonstrate that the geometry of roadway obstructions is significant and may result in partial compression and sometimes secondary overpressurization in blocked and small comer roadways leading to significant attenuation of outburst shock waves.The shock waves attenuate slowly in both straight and abruptly expanding roadways and more significantly in T-shaped roadways.The most significant attenuation appears in small angle comers and bifurcations in roadways with the largest attenuation occurring in blocked roadways.These results provide basic parameters for simplifying transport in complex roadway networks in the far-field,and guidance for the design of coal and gas outburst prevention facilities and emergency rescue.
基金Funded by the Doctoral Foundation of the Ministry of Education of China (2000061115)
文摘Road tunnel excavation often traverses coal strata, which is at risk of firedamp explosion that usually results in disaster. Airtight concrete grouting is popularly used in this kind of tunnel project. Based on the essential theory of mechanics of fluids in porous media, the principle of improving concrete airtight property and its influential factors are investigated. The proportioning tests and monitoring method for airtight concrete are introduced, which is illustrated by a case study applied to the project of the Huayinshan Tunnel. It is proved by engineering practices that the achievement of this research work is beneficial to tunneling project across coal strata.