Landscape designers increasingly prefer to use wood/bamboo-based composites for outdoor hydrophilic platforms owing to their natural surface texture,high performance,and sustainability to facilitate extensive interact...Landscape designers increasingly prefer to use wood/bamboo-based composites for outdoor hydrophilic platforms owing to their natural surface texture,high performance,and sustainability to facilitate extensive interaction between people and water and enable the full range of ecological functions of water resources.In this study,four laminated composite(LC)structures were designed and manufactured using fluffed bamboo and wood veneers.Their surface textures,profile densities,water resistances,and mechanical properties were then evaluated.The type of fluffed veneer of the surface layer determined the texture of the LC surface.The specific structures of fluffed bamboo and wood veneer laminations were found to affect the LC profile density variability,water resistance,and mechanical properties owing to the differences in the strength and interfacial properties of bamboo and wood fibers.Finally,the water resistance and mechanical properties of all four LCs were found to be much higher than the highest level specified in GB/T 20241-2006 for“laminated veneer lumber”and GB/T 30364-2013 for“bamboo scrimber flooring”,indicating that they are promising materials for structures and flooring,particularly for outdoor hydrophilic platforms.展开更多
Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment impro...Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.展开更多
基金the Science and Technology Project of Zhejiang Province(2021C02012)the Science Foundation of Zhejiang Provincial Department of Education(113429A4F21070)the Science Foundation of Zhejiang Sci-Tech University(11340031282014 and 11343132612052).
文摘Landscape designers increasingly prefer to use wood/bamboo-based composites for outdoor hydrophilic platforms owing to their natural surface texture,high performance,and sustainability to facilitate extensive interaction between people and water and enable the full range of ecological functions of water resources.In this study,four laminated composite(LC)structures were designed and manufactured using fluffed bamboo and wood veneers.Their surface textures,profile densities,water resistances,and mechanical properties were then evaluated.The type of fluffed veneer of the surface layer determined the texture of the LC surface.The specific structures of fluffed bamboo and wood veneer laminations were found to affect the LC profile density variability,water resistance,and mechanical properties owing to the differences in the strength and interfacial properties of bamboo and wood fibers.Finally,the water resistance and mechanical properties of all four LCs were found to be much higher than the highest level specified in GB/T 20241-2006 for“laminated veneer lumber”and GB/T 30364-2013 for“bamboo scrimber flooring”,indicating that they are promising materials for structures and flooring,particularly for outdoor hydrophilic platforms.
基金Project(50878111) supported by the National Natural Science Foundation of China
文摘Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.