期刊文献+
共找到346篇文章
< 1 2 18 >
每页显示 20 50 100
Density-based trajectory outlier detection algorithm 被引量:10
1
作者 Zhipeng Liu Dechang Pi Jinfeng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期335-340,共6页
With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the pr... With the development of global position system(GPS),wireless technology and location aware services,it is possible to collect a large quantity of trajectory data.In the field of data mining for moving objects,the problem of anomaly detection is a hot topic.Based on the development of anomalous trajectory detection of moving objects,this paper introduces the classical trajectory outlier detection(TRAOD) algorithm,and then proposes a density-based trajectory outlier detection(DBTOD) algorithm,which compensates the disadvantages of the TRAOD algorithm that it is unable to detect anomalous defects when the trajectory is local and dense.The results of employing the proposed algorithm to Elk1993 and Deer1995 datasets are also presented,which show the effectiveness of the algorithm. 展开更多
关键词 density-based algorithm trajectory outlier detection(TRAOD) partition-and-detect framework Hausdorff distance
下载PDF
GA-iForest: An Efficient Isolated Forest Framework Based on Genetic Algorithm for Numerical Data Outlier Detection 被引量:4
2
作者 LI Kexin LI Jing +3 位作者 LIU Shuji LI Zhao BO Jue LIU Biqi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第6期1026-1038,共13页
With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorith... With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method. 展开更多
关键词 outlier detection isolation tree isolated forest genetic algorithm feature selection
下载PDF
基于快速SVDD的无线传感器网络Outlier检测 被引量:8
3
作者 谢迎新 陈祥光 +2 位作者 余向明 岳彬 郭静 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第1期46-51,共6页
Outlier是基于无线传感器网络的数据收集应用中常见的数据故障类型,严重影响数据质量。本文提出一种基于快速SVDD的无线传感器网络Outlier检测方法,其基本思想是:首先利用快速SVDD算法获得包含正常样本的最小球形边界,然后通过该边界判... Outlier是基于无线传感器网络的数据收集应用中常见的数据故障类型,严重影响数据质量。本文提出一种基于快速SVDD的无线传感器网络Outlier检测方法,其基本思想是:首先利用快速SVDD算法获得包含正常样本的最小球形边界,然后通过该边界判断未知样本的类别,本法采用训练集约减策略和基于二阶逼近的SMO算法来加速SVDD的训练。基于合成数据和真实数据的仿真实验表明,该方法在确保分类精度的同时,运行速度快,内存开销小,适用于资源有限的无线传感器网络。 展开更多
关键词 无线传感器网络 outlier检测 SVDD 训练集约简 SMO算法
下载PDF
Novel robust approach for constructing Mamdani-type fuzzy system based on PRM and subtractive clustering algorithm 被引量:1
4
作者 褚菲 马小平 +1 位作者 王福利 贾润达 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2620-2628,共9页
A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy syst... A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values. 展开更多
关键词 Mamdani-type fuzzy system robust system subtractive clustering algorithm outlier partial robust M-regression
下载PDF
基于SMOTE和XGBoost的天然气水合物与天然气储层识别
5
作者 杜睿山 黄玉朋 +4 位作者 付晓飞 孟令东 张轶楠 靳明洋 蔡洪波 《特种油气藏》 CAS CSCD 北大核心 2024年第5期11-19,共9页
天然气水合物与天然气储层识别一直是海洋能源勘探开发阶段的重点任务。然而,由于测井数据与储层之间的复杂非线性关系以及测井数据的不均衡性,导致传统储层识别方法往往精度不高,严重限制了研究区域的勘探进展。为解决上述问题,提出了... 天然气水合物与天然气储层识别一直是海洋能源勘探开发阶段的重点任务。然而,由于测井数据与储层之间的复杂非线性关系以及测井数据的不均衡性,导致传统储层识别方法往往精度不高,严重限制了研究区域的勘探进展。为解决上述问题,提出了一种用于储层识别的混合方法,即采用改进的SMOTE算法增加少数类储层样本数量,并进行去噪处理,可有效地解决数据不均衡的问题,再利用XGBoost算法对储层进行识别。结果表明:相比于传统的机器学习方法,RLSMOTE-XGB方法在储层识别方面具有更高的有效性和准确性,该方法解决了传统机器学习方法在样本类别不均衡时的局限性,储层识别精度从66.7%提高至86.4%,算法的性能得到显著提升。该研究可有效提高天然气水合物与天然气储层识别效果,对实现智能化识别储层有重要意义。 展开更多
关键词 储层识别 SMOTE 机器学习 RLSMOTE-XGB 离群点检测算法
下载PDF
基于贡献度和数据有效性检验的共识机制
6
作者 时小虎 姚鑫 +1 位作者 孙延风 马德印 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期160-169,178,共11页
将区块链技术引入到分布式数据维护系统,旨在解决基于传统中心化数据库的分布式系统存在的数据维护不透明、数据易被篡改、历史记录不可追溯等问题,提出一种基于贡献度和数据有效性检验的共识机制.该算法提出一种贡献度优先的随机可验... 将区块链技术引入到分布式数据维护系统,旨在解决基于传统中心化数据库的分布式系统存在的数据维护不透明、数据易被篡改、历史记录不可追溯等问题,提出一种基于贡献度和数据有效性检验的共识机制.该算法提出一种贡献度优先的随机可验证领导者选举机制,保证记账权分配的随机性及可验证性.进一步引入密度峰值算法对交易数据有效性进行校验,对打包区块的正确性达成共识.最后将所提出的共识机制应用于梅花鹿分布式养殖场场景,结果验证了密度峰值算法在交易数据有效性检测任务中的准确性和高效性.出块时延分析和安全性分析表明,所提出的共识机制能够满足数据有效性验证的实时性需求,能耗较小,具有很强的灾备能力. 展开更多
关键词 区块链 共识机制 离群点检测 分布式数据维护 溯源
下载PDF
地铁盾构下穿高铁站房安全监测
7
作者 龙四春 唐敏轩 +3 位作者 周健 赖咸根 张立亚 熊朝晖 《测绘工程》 2024年第3期67-74,共8页
针对地铁盾构下穿地表建筑物形变规律监测和复杂工况环境下地基SAR数据处理等问题,提出利用广义离群检验算法对地基SAR一阶差分相位数据进行粗差探测与剔除,联合地基SAR与测量机器人监测数据对地铁盾构下穿湘潭北站高铁站房进行形变监... 针对地铁盾构下穿地表建筑物形变规律监测和复杂工况环境下地基SAR数据处理等问题,提出利用广义离群检验算法对地基SAR一阶差分相位数据进行粗差探测与剔除,联合地基SAR与测量机器人监测数据对地铁盾构下穿湘潭北站高铁站房进行形变监测与安全分析,并基于力学模型和Flac3D软件进行数值模拟,较好的得出盾构下穿高铁站房各阶段形变特征与规律。结果表明,广义离群检验算法有效解决了复杂工况环境下地基SAR数据遮挡问题,联合测量机器人数据得到与数值模型变形解算结果一致,且符合施工过程物理力学客观规律,基本实现盾构下穿地表建筑物安全监测,为类似地铁盾构安全施工检测提供参考。 展开更多
关键词 地基SAR 盾构下穿 安全监测 广义离群检验算法 形变规律
下载PDF
基于关联规则的局部离群数据挖掘算法设计
8
作者 王玲风 《佳木斯大学学报(自然科学版)》 CAS 2024年第6期18-21,共4页
针对现有挖掘算法在对局部离散数据挖掘时,存在挖掘结果关联度低、挖掘效率低的问题,引入关联规则,开展对局部离群数据挖掘算法设计研究。对需要挖掘的局部离散数据预处理,包括数据清洗、数据集成等。针对局部离散数据中的高维数据,提... 针对现有挖掘算法在对局部离散数据挖掘时,存在挖掘结果关联度低、挖掘效率低的问题,引入关联规则,开展对局部离群数据挖掘算法设计研究。对需要挖掘的局部离散数据预处理,包括数据清洗、数据集成等。针对局部离散数据中的高维数据,提出一种基于属性相关分析方法,实现聚类。确定挖掘算法中的离群因子与链距离。最后,结合关联规则,实现对局部离散数据的并行挖掘。通过对比实验证明,新的挖掘算法挖掘结果关联度更高,且挖掘效率高,具备极高应用价值。 展开更多
关键词 关联规则 离群 算法 挖掘 数据 局部
下载PDF
基于离群点检测和自适应参数的三支DBSCAN算法
9
作者 李志聪 孙旭阳 《计算机应用研究》 CSCD 北大核心 2024年第7期1999-2004,共6页
针对经典的DBSCAN算法存在难以确定全局最优参数和误判离群点的问题,该算法首先从选择最优参数角度出发,通过数据集的分布特征生成Eps和MinPts列表,将两个列表中的参数进行全组合操作,把不同的参数组合依次进行聚类,从而寻找准确率最高... 针对经典的DBSCAN算法存在难以确定全局最优参数和误判离群点的问题,该算法首先从选择最优参数角度出发,通过数据集的分布特征生成Eps和MinPts列表,将两个列表中的参数进行全组合操作,把不同的参数组合依次进行聚类,从而寻找准确率最高点对应的参数。最后从离群点角度出发,将三支决策思想与离群点检测LOF算法进行结合。该算法与多种聚类算法进行效果对比分析,结果表明该算法能够全自动化选择全局最优参数,并提高聚类算法的准确性。 展开更多
关键词 DBSCAN算法 三支聚类 自适应参数 离群点检测
下载PDF
启发式k-means聚类算法的改进研究
10
作者 殷丽凤 栗庆杰 《大连交通大学学报》 CAS 2024年第2期115-119,共5页
启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结... 启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结果的误差平方和较大并且轮廓系数偏小。针对这一问题,提出了CHk-means算法,该算法引入仔细播种方法,克服了启发式k-means算法随机选择初始聚类中心带来的局部最优解问题;该算法引入局部异常因子LOF算法对离群点进行检测,降低了离群点数据对聚类结果的影响。在多个数据集上对3种算法进行对比试验,结果表明CHk-means算法可有效降低聚类结果的误差平方和,增强聚类的轮廓系数,使聚类质量得到明显改善。 展开更多
关键词 聚类算法 K-MEANS 启发式算法 仔细播种 局部异常因子 离群点
下载PDF
基于异常点检测的大学生异质行为分析
11
作者 彭琳 宋珺 +1 位作者 刘安栋 熊玲珠 《软件导刊》 2024年第4期193-198,共6页
大学生异质行为指的是大学生具有个性特征、不同于他人的行为偏好。针对大学生异质个体的行为挖掘问题,提出一种基于异常点检测的异质行为分析方法。首先以某校大学生成绩数据和校园一卡通数据为基础,建立异质行为分析模型,采用主成分... 大学生异质行为指的是大学生具有个性特征、不同于他人的行为偏好。针对大学生异质个体的行为挖掘问题,提出一种基于异常点检测的异质行为分析方法。首先以某校大学生成绩数据和校园一卡通数据为基础,建立异质行为分析模型,采用主成分分析、K-Means++和DBSCAN聚类分析寻找异常点,研究关注异常点对应的异质行为人。然后,通过异常点检测辨别学习成绩中的异质个体,并进一步探究其作息规律与学习成绩异常之间是否存在强关联。接下来,运用多种算法相互印证异常点的准确性,借助对相关学生的调研来验证异常点数据的可信度。研究表明,所提方法能对大学生异质行为模式进行深度分析,为提升学校管理水平和管理效率提供了基础依据。 展开更多
关键词 异质性 行为分析 聚类算法 主成分分析 异常点检测
下载PDF
基于核函数的隔离森林算法
12
作者 董东 郝琳琳 《软件导刊》 2024年第11期125-128,共4页
基于随机子采样的隔离森林算法没有考虑到子采样中来自不同区域样本点之间的相对密度,为此提出基于核函数的隔离森林算法K-iForest,根据概率密度函数重新采样来提高隔离森林算法的性能。在离群点检测数据库(ODDS)的Annthyroid、ForestCo... 基于随机子采样的隔离森林算法没有考虑到子采样中来自不同区域样本点之间的相对密度,为此提出基于核函数的隔离森林算法K-iForest,根据概率密度函数重新采样来提高隔离森林算法的性能。在离群点检测数据库(ODDS)的Annthyroid、ForestCover、Mulcross、Shuttle和Http(KDD Cup 1999)、Smtp(KDD Cup 1999)、KDD CUP 99数据集上验证K-iForest算法的有效性和效率,并与iForest算法、EIF算法、RRCF算法、GIF算法以及HIF算法进行比较。实验结果表明,K-iForest算法的AUC值高出其他算法0.1%~100.2%。 展开更多
关键词 核函数 离群点检测 隔离森林算法 概率密度 相对密度
下载PDF
基于IKNN和LOF的变压器回复电压数据清洗方法研究 被引量:1
13
作者 陈啸轩 邹阳 +3 位作者 翁祖辰 林锦茄 林昕亮 张云霄 《电子测量与仪器学报》 CSCD 北大核心 2024年第2期92-100,共9页
基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近... 基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近邻(IKNN)的回复电压数据清洗方法。首先,选取回复电压极化谱的回复电压极大值Urmax、初始斜率Sr与主时间常数tcdom作为老化特征参量,并基于LOF算法对非标准极化谱中的异常特征量数据进行识别与筛除。其次,利用模糊C均值(FCM)聚类算法减小噪声点对KNN算法的干扰,并通过加权欧氏距离标度突出各特征量间的关联性,进而构建出基于IKNN的数据填补模型架构以实现特征缺失数据的填补。最后,代入多组实测数据验证所提数据清洗方法的实效性。结果表明,数据清洗后的状态评估准确率相较于原有数据上升了50%左右,有效提高了变压器回复电压数据质量,为准确感知变压器运行状况奠定坚实的基础。 展开更多
关键词 油纸绝缘 特征数据清洗 局部离群因子算法 回复电压极化谱 改进K最近邻算法
下载PDF
基于时间序列压缩分割的监测数据异常识别算法研究
14
作者 蒲黔辉 张子怡 +2 位作者 肖图刚 洪彧 文旭光 《桥梁建设》 EI CSCD 北大核心 2024年第3期15-23,共9页
为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时... 为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时间序列通过基于序列重要点(Series Importance Point, SIP)的时间序列线性分段(Piecewise Linear Represent, PLR)算法(PLR_SIP)得到数条时间子序列;然后采用欧氏距离进行时间子序列的相似性分析,并基于改进的局部离群因子(Local Outlier Factor, LOF)算法计算每条时间子序列的局部离群因子;最后将其与设定的阈值相比较,从而识别出监测数据的异常。为验证该算法的准确性与工程实用性,对某公路大跨度斜拉桥健康监测数据进行异常识别。结果表明:采用PLR_SIP算法对原始时间序列压缩分割得到的时间子序列能够准确地反映原序列的变化趋势和范围;改进的LOF算法突破了传统LOF算法仅能识别离群值这类无持续时间异常的局限性,能够排除噪声的干扰,实现对离群、缺失和漂移3种异常的识别。该算法无需定义训练集,直接以原始监测数据作为算法的输入,同时能够自适应调整阈值参数,具有良好的可扩展性、实时性、准确性和高效性,适用于处理实时、大量的桥梁健康监测数据。 展开更多
关键词 斜拉桥 健康监测数据 异常识别 PLR_SIP算法 LOF算法 时间序列 欧氏距离 局部离群因子
下载PDF
基于集成学习的脱硫剂加入量预测方法
15
作者 方一飞 但斌斌 +3 位作者 吴经纬 容芷君 都李平 罗钟邱 《武汉科技大学学报》 CAS 北大核心 2024年第5期361-367,共7页
为解决铁水预脱硫过程中脱硫剂加入量控制问题,提出一种基于集成学习的脱硫剂加入量预测方法。首先,对原始数据进行预处理,将空值、重复值、0值以及不符合工艺规范的数据行删除,并使用LOF算法结合专家经验剔除异常值;其次,基于GBDT算法... 为解决铁水预脱硫过程中脱硫剂加入量控制问题,提出一种基于集成学习的脱硫剂加入量预测方法。首先,对原始数据进行预处理,将空值、重复值、0值以及不符合工艺规范的数据行删除,并使用LOF算法结合专家经验剔除异常值;其次,基于GBDT算法计算每个输入特征的重要性占比,进行特征筛选;最后,采用Optuna超参数自动寻优框架对预测模型调优,寻找最佳超参数组合,预测脱硫剂加入量。利用某钢厂铁水预处理过程中的实际生产数据,分别采用XGBoost、RF、GBDT以及LightGBM等方法构建预测模型并进行对比试验。其中XGBoost模型的拟合精度(R^(2))、均方根误差(RMSE)、平均绝对误差(MAE)以及平均绝对百分比误差(MAPE)分别为0.8962、198.245、119.726以及7.897%,相较于其它模型均是最优。 展开更多
关键词 脱硫剂加入量 铁水预脱硫 局部异常因子 Optuna算法 极限梯度提升树
下载PDF
基于LOF算法的核辐射自动监测系统设计与实现 被引量:3
16
作者 时劲松 冯江平 +5 位作者 王珍华 张金帆 闫翠翠 刘焱 杨颖琪 彭丽君 《核电子学与探测技术》 CAS 北大核心 2024年第2期303-310,共8页
为适应对高精度、全覆盖的核辐射监测要求,本文基于局部离群因子算法(Local Outlier Factor,LOF)设计了一套完善的核辐射自动监测系统。首先,结合具体情况,进行核辐射自动监测站布点,实时获取核辐射监测数据并通过无线通信网络传至服务... 为适应对高精度、全覆盖的核辐射监测要求,本文基于局部离群因子算法(Local Outlier Factor,LOF)设计了一套完善的核辐射自动监测系统。首先,结合具体情况,进行核辐射自动监测站布点,实时获取核辐射监测数据并通过无线通信网络传至服务器,采用传输加密技术保障数据传输过程的安全性与可靠性;其次,通过引入LOF算法有效识别监测数据中存在的传感器故障或者设备缺陷导致的无效监测异常值,无效值将不列入数据统计;最后,将有效的监测实时数据传送至监测指挥中心。系统试运行测试结果表明:该系统能有效针对各种硬件故障导致的无效数据进行高可靠性的实时监测和识别,无效数据判断准确性超过95%,提高了核辐射环境自动监测的稳定性和可靠性,有效防范核辐射造成的危害,为促进生态系统的可持续发展提供参考。 展开更多
关键词 核辐射 LOF算法 大数据监测 核与辐射安全
下载PDF
基于融合改进K-means聚类算法的数据检测技术 被引量:3
17
作者 郭克难 《电子设计工程》 2024年第5期41-45,共5页
针对现有医疗财务数据分析系统平台老旧,采用传统K-means算法进行数据处理时性能较差的问题,文中设计了一种财务异常数据检测算法。对于传统K-means算法存在的分类效果不佳、运行效率偏低等不足,该算法结合密度峰值法对样本点的局部密... 针对现有医疗财务数据分析系统平台老旧,采用传统K-means算法进行数据处理时性能较差的问题,文中设计了一种财务异常数据检测算法。对于传统K-means算法存在的分类效果不佳、运行效率偏低等不足,该算法结合密度峰值法对样本点的局部密度和高密度距离进行计算,进而优化簇中心的选择。同时融合PCA降维算法减少了数据的冗余信息,进一步提高了运行效率。通过引入LOF离群检测算法对分簇后的数据进行检测,从而得到异常数据结果。实验测试中,所提算法在人工数据集上的平均ARI指标为0.844,真实数据集的准确率则达到了79.2%,在所有对比算法中均为最优,表明该算法具有良好的性能,可以对财务异常数据进行准确地检测。 展开更多
关键词 K-MEANS聚类 密度峰值检测 主成分分析法 离群检测算法 异常数据检测
下载PDF
基于改进K-means聚类算法的网络异常数据挖掘与分类方法
18
作者 贺萌 《无线互联科技》 2024年第18期119-122,共4页
为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类... 为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类对数据的最大最小距离展开计算,融合隶属度函数与密度峰值优化算法,改进聚类初始中心选择及簇边界调整,从而提高异常识别准确性和分类效率。通过实验结果证明,该方法能够明显改善聚类效果与性能。 展开更多
关键词 K-MEANS聚类算法 网络异常 数据挖掘 数据分类 离群点检测
下载PDF
船用开关柜局部放电异常检测
19
作者 李浩 陈亚杰 杨帆 《机电设备》 2024年第2期35-41,共7页
针对船用开关柜现场带电检测数据,提出了一种基于多维特征量的主成分(PCA)聚类离群算法,对柜体的局部放电程度进行异常识别。首先采用运行时间的年限系数以及局部放电检测数据的离散度、均值距离度和极差度等指标全面量化开关柜局部放... 针对船用开关柜现场带电检测数据,提出了一种基于多维特征量的主成分(PCA)聚类离群算法,对柜体的局部放电程度进行异常识别。首先采用运行时间的年限系数以及局部放电检测数据的离散度、均值距离度和极差度等指标全面量化开关柜局部放电状态程度,构建PCA-多维样本数据集;通过轮廓系数法选择聚类离群算法最佳的簇参数;考虑聚类后各类别之间的密度差异性,引入相对距离量化局部放电的程度,由此实现局放程度异常识别。对现场带电检测实际数据进行实例分析,验证该方法的可行性,为船用开关柜的局部放电状态异常识别提供一定的理论依据。 展开更多
关键词 开关柜 PCA-多维样本 轮廓系数 相对距离 聚类离群
下载PDF
基于动态门限与自适应插值的外引导平滑算法
20
作者 王厚峰 张世学 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第4期247-255,共9页
为了实现靶场光电经纬仪外引导数据的实时平滑,确保外引导数据驱动下光电经纬仪稳定获取图像,提出基于动态门限的野值处理算法和基于自适应插值的处理算法。对于外引导数据中的野值,提出一种利用影响函数动态计算样本方差的方式,构建动... 为了实现靶场光电经纬仪外引导数据的实时平滑,确保外引导数据驱动下光电经纬仪稳定获取图像,提出基于动态门限的野值处理算法和基于自适应插值的处理算法。对于外引导数据中的野值,提出一种利用影响函数动态计算样本方差的方式,构建动态判别门限实时完成野值的处理;对于外引导数据的插值处理,判断插值计算的连贯性,并将外引导的“卡顿”数据进行分类,采取不同的策略实时自适应插值。实验结果表明:基于动态门限的五点外推野值剔除方法,野值检测率平均在80%以上,同时虚警率较低;插值处理算法能同时应对卡顿与非卡顿的外引导数据,处理结果平滑连贯。算法已成功应用于海军某观测站的光电经纬仪,满足了靶场弹道测量系统的需要。 展开更多
关键词 光电经纬仪 靶场测控 外引导数据 野值判别 插值算法
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部