机械设备正常运行的振动信号很容易获得,而有故障时的振动信号一般很难获得。在没有故障信号时可以仅仅依靠正常运行时的信号,利用支持向量数据描述方法(support vector data description,SVDD)建立单值分类器,从而对设备运行状态进行...机械设备正常运行的振动信号很容易获得,而有故障时的振动信号一般很难获得。在没有故障信号时可以仅仅依靠正常运行时的信号,利用支持向量数据描述方法(support vector data description,SVDD)建立单值分类器,从而对设备运行状态进行监测诊断。当具有一定的故障样本(非目标样本)时,既可以建立传统的二值分类器,也可以建立SVDD单值分类器。但当非目标样本较少时,传统的二分类器就很难有好的分类能力,而SVDD方法只利用了一类样本信息,对信息没有充分利用,也同样不利于提高监测诊断的准确性。文中研究一种改进的SVDD——加入非目标样本的SVDD分类方法,及其在故障诊断中的应用,该方法将实际生产中难以得到的故障信息加以利用,使信息利用更加充分,提高设备故障分类的准确性。通过对滚动轴承实验数据的分析,证明该方法可以有效提高故障诊断的准确度。展开更多
文摘机械设备正常运行的振动信号很容易获得,而有故障时的振动信号一般很难获得。在没有故障信号时可以仅仅依靠正常运行时的信号,利用支持向量数据描述方法(support vector data description,SVDD)建立单值分类器,从而对设备运行状态进行监测诊断。当具有一定的故障样本(非目标样本)时,既可以建立传统的二值分类器,也可以建立SVDD单值分类器。但当非目标样本较少时,传统的二分类器就很难有好的分类能力,而SVDD方法只利用了一类样本信息,对信息没有充分利用,也同样不利于提高监测诊断的准确性。文中研究一种改进的SVDD——加入非目标样本的SVDD分类方法,及其在故障诊断中的应用,该方法将实际生产中难以得到的故障信息加以利用,使信息利用更加充分,提高设备故障分类的准确性。通过对滚动轴承实验数据的分析,证明该方法可以有效提高故障诊断的准确度。