With the development of information and communication technologies,all public tertiary hospitals in China began to use online outpatient appointment systems.However,the phenomenon of patient no-shows in online outpati...With the development of information and communication technologies,all public tertiary hospitals in China began to use online outpatient appointment systems.However,the phenomenon of patient no-shows in online outpatient appointments is becoming more serious.The objective of this study is to design a prediction model for patient no-shows,thereby assisting hospitals in making relevant decisions,and reducing the probability of patient no-show behavior.We used 382,004 original online outpatient appointment records,and divided the data set into a training set(N_(1)=286,503),and a validation set(N_(2)=95,501).We used machine learning algorithms such as logistic regression,k-nearest neighbor(KNN),boosting,decision tree(DT),random forest(RF)and bagging to design prediction models for patient no-show in online outpatient appointments.The patient no-show rate of online outpatient appointment was 11.1%(N=42,224).From the validation set,bagging had the highest area under the ROC curve and AUC value,which was 0.990,followed by random forest and boosting models,which were 0.987 and 0.976,respectively.In contrast,compared with the previous prediction models,the area under ROC and AUC values of the logistic regression,decision tree,and k-nearest neighbors were lower at 0.597,0.499 and 0.843,respectively.This study demonstrates the possibility of using data from multiple sources to predict patient no-shows.The prediction model results can provide decision basis for hospitals to reduce medical resource waste,develop effective outpatient appointment policies,and optimize operations.展开更多
The occurrence of missed appointments from online outpatient bookings significantly hinders the operational efficiency of outpatient services.This study aimed to investigate various factors influencing patients’misse...The occurrence of missed appointments from online outpatient bookings significantly hinders the operational efficiency of outpatient services.This study aimed to investigate various factors influencing patients’missed appointments from online outpatient bookings.Drawing on attribution theory,an empirical analysis was conducted using 382,004 authentic online outpatient appointments.The empirical findings revealed that appointment lead-time,appointment time,weekday appointments,online doctor rating,appointment doctor’s expertise,patient distance,and previous outpatient visit experience significantly influenced patients’missed appointment behaviors from online outpatient bookings.Importantly,previous outpatient experience positively moderated the relationship between the appointment doctor’s expertise and patients’missed-appointment behavior.This study provides insights into the factors influencing patients’missed-appointment behavior from online outpatient bookings.It further offers a theoretical foundation for medical institutions in China to mitigate the likelihood and adverse effects of patients’missed-appointment behavior from online outpatient bookings.展开更多
基金National Natural Science Foundation Program of China[No.71971092],[No.71671073]and[71810107003].
文摘With the development of information and communication technologies,all public tertiary hospitals in China began to use online outpatient appointment systems.However,the phenomenon of patient no-shows in online outpatient appointments is becoming more serious.The objective of this study is to design a prediction model for patient no-shows,thereby assisting hospitals in making relevant decisions,and reducing the probability of patient no-show behavior.We used 382,004 original online outpatient appointment records,and divided the data set into a training set(N_(1)=286,503),and a validation set(N_(2)=95,501).We used machine learning algorithms such as logistic regression,k-nearest neighbor(KNN),boosting,decision tree(DT),random forest(RF)and bagging to design prediction models for patient no-show in online outpatient appointments.The patient no-show rate of online outpatient appointment was 11.1%(N=42,224).From the validation set,bagging had the highest area under the ROC curve and AUC value,which was 0.990,followed by random forest and boosting models,which were 0.987 and 0.976,respectively.In contrast,compared with the previous prediction models,the area under ROC and AUC values of the logistic regression,decision tree,and k-nearest neighbors were lower at 0.597,0.499 and 0.843,respectively.This study demonstrates the possibility of using data from multiple sources to predict patient no-shows.The prediction model results can provide decision basis for hospitals to reduce medical resource waste,develop effective outpatient appointment policies,and optimize operations.
文摘The occurrence of missed appointments from online outpatient bookings significantly hinders the operational efficiency of outpatient services.This study aimed to investigate various factors influencing patients’missed appointments from online outpatient bookings.Drawing on attribution theory,an empirical analysis was conducted using 382,004 authentic online outpatient appointments.The empirical findings revealed that appointment lead-time,appointment time,weekday appointments,online doctor rating,appointment doctor’s expertise,patient distance,and previous outpatient visit experience significantly influenced patients’missed appointment behaviors from online outpatient bookings.Importantly,previous outpatient experience positively moderated the relationship between the appointment doctor’s expertise and patients’missed-appointment behavior.This study provides insights into the factors influencing patients’missed-appointment behavior from online outpatient bookings.It further offers a theoretical foundation for medical institutions in China to mitigate the likelihood and adverse effects of patients’missed-appointment behavior from online outpatient bookings.