In order to promote the light output powers of GaN-based light emitting diodes (LEDs), two kinds of novel corrosive liquidshave been developed in this paper to roughen the surface of the indium tin oxide (ITO) current...In order to promote the light output powers of GaN-based light emitting diodes (LEDs), two kinds of novel corrosive liquidshave been developed in this paper to roughen the surface of the indium tin oxide (ITO) current spreading layer of LEDs. As aresult, the textured transparent ITO layer greatly enhanced the external quantum efficiency of the LEDs. Provided that a wafersample was dipped in a kind of corrosive liquid developed by us for only about 60 s, the light output powers of the LEDs canbe promoted by 24.7%, compared with conventional GaN-based LEDs. It is obvious that the presented method is simple, rapidand cost-effective.展开更多
基金supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 8251063101000007, 10151063101000009 and 9451063101002082)the Scientific & Technological Plan of Guangdong Province (Grant Nos. 2008B010200004, 2010B010600030 and 2009B011100003)+2 种基金the National Natural Science Foundation of China(Grant Nos. 61078046 and 10904042)the Key Project of Chinese Ministryof Education (Grant No. 210157)the Scientific & Technological Project of Education Department of Hubei Province (Grant No. D20101104)
文摘In order to promote the light output powers of GaN-based light emitting diodes (LEDs), two kinds of novel corrosive liquidshave been developed in this paper to roughen the surface of the indium tin oxide (ITO) current spreading layer of LEDs. As aresult, the textured transparent ITO layer greatly enhanced the external quantum efficiency of the LEDs. Provided that a wafersample was dipped in a kind of corrosive liquid developed by us for only about 60 s, the light output powers of the LEDs canbe promoted by 24.7%, compared with conventional GaN-based LEDs. It is obvious that the presented method is simple, rapidand cost-effective.