This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe in...This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl...This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.展开更多
This article explores the impact of the three-dimensional cultivation mode on the development of the Suzhou tea industry,focusing on the diversified estimation of the value of output per acre and sales mode.It introdu...This article explores the impact of the three-dimensional cultivation mode on the development of the Suzhou tea industry,focusing on the diversified estimation of the value of output per acre and sales mode.It introduces the history and traditional cultivation practices of tea in Suzhou,as well as the current challenges and problems faced by the industry.An in-depth analysis was conducted on the overview and improvement plans of the three-dimensional cultivation mode,covering relevant technical methods.Based on this analysis,the impact of the three-dimensional cultivation on the value of output per acre was studied and predicted.Its potential and advantages were explored and compared with the effectiveness of traditional cultivation models.Additionally,the impact of the three-dimensional cultivation mode on sales was analyzed,examining its market adaptability and competitiveness,as well as its advantages in expanding sales channels and market coverage.The study also focused on the promoting effect of diversified sales models on the Suzhou tea industry,including direct consumption market development,tea processing product development and promotion,and the integration of tea culture and the tourism industry.To ensure sustainable development,the article evaluates the environmental impact,economic feasibility,social benefits,and farmer benefits of the three-dimensional cultivation model.Finally,the prospects for the development of the Suzhou tea industry were discussed,and the positioning and response strategies of the threedimensional cultivation model were proposed.展开更多
This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-mini...This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.展开更多
This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topolog...This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topologies as a continuous-time Markov process and taking the distributed delays into consideration,a novel distributed containment observer is proposed to estimate the convex hull spanned by the leaders'states.A novel distributed output feedback containment controller is then designed without using the prior knowledge of distributed delays.By constructing a novel switching Lyapunov functional,the output containment control problem is then solved in the sense of mean square under an easily-verifiable sufficient condition.Finally,two numerical examples are given to show the effectiveness of the proposed controller.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem wit...This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.展开更多
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho...In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.展开更多
This study established a novel method for the simultaneous detection of two-component gases.Radio frequency(RF)white noise disturbance laser current and wavelength modulation were simultaneously used to improve the of...This study established a novel method for the simultaneous detection of two-component gases.Radio frequency(RF)white noise disturbance laser current and wavelength modulation were simultaneously used to improve the off-axis integrated cavity output spectroscopy technique,and a high-precision dual modulation OA-ICOS(RF-WM-OA-ICOS)system was established.The two laser beams were coupled into one laser beam that was applied incident to the cavity of RF-WM-OA-ICOS system.The second harmonic signals of CH_(4)and CO_(2)gas simultaneously appeared in the rising or falling edge of a triangular wave.This method was used to measure CH_(4)and CO_(2)with different concentrations.The results indicated that the proposed system has high stability and can accurately and simultaneously measure the concentrations of CH_(4)and CO_(2),with an optimal integration time of 220 s.The minimum detection limit was 10 ppb for CH_(4)and 1.5 ppm for CO_(2).The corresponding noise equivalent absorption sensitivity values were calculated as 2.67×10^(-13)cm^(-1)·Hz^(-1/2)and 5.18×10^(-11)cm^(-1)·Hz^(-1/2),respectively.The proposed dual-component gas simultaneous detection method can also be used for high-precision simultaneous detection of other gases.Therefore,this study may serve as a reference for developing portable multicomponent gas analyzers.展开更多
In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Elect...In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.展开更多
It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs...It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs to be accommodated and only system output is available for feedback.Several key design innovations are proposed to circumvent the aforementioned technical difficulties,including the employment of state estimation filters with event-triggered mechanism,the construction of a novel performance scaling function and an error transformation.In contrast to most existing performance based works where the stability is contingent on initial conditions and the maximum allowable steady-state tracking precision can only be guaranteed at some unknown(theoretically infinite)time,in this work the output of the system is ensured to synchronize with the desired trajectory with arbitrarily pre-assignable convergence rate and arbitrarily pre-specified precision within prescribed time,using output only with lower cost of sensing and communication.In addition,all the closed-loop signals are ensured to be globally uniformly bounded under the proposed control method.The merits of the designed control scheme are confirmed by numerical simulation on a ship model.展开更多
Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf lu...Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.展开更多
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ...To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.展开更多
This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of sys...This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.展开更多
Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabin...Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.展开更多
基金the National Natural Science Foundation of China(NSFC)-Excellent Young Scientists Fund(Hong Kong and Macao)under Grant 62222318.
文摘This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金supported by the National Natural Science Foundation of China (62073327,62273350)the Natural Science Foundation of Jiangsu Province (BK20221112)。
文摘This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.
基金Suzhou Agricultural Vocational and Technical College Young Teachers Research Ability Enhancement Program“Research and Screening of Bacteria for Fermented Beverages of Vice Tea and Loquat Flower”(Project No.QN[2022]01)。
文摘This article explores the impact of the three-dimensional cultivation mode on the development of the Suzhou tea industry,focusing on the diversified estimation of the value of output per acre and sales mode.It introduces the history and traditional cultivation practices of tea in Suzhou,as well as the current challenges and problems faced by the industry.An in-depth analysis was conducted on the overview and improvement plans of the three-dimensional cultivation mode,covering relevant technical methods.Based on this analysis,the impact of the three-dimensional cultivation on the value of output per acre was studied and predicted.Its potential and advantages were explored and compared with the effectiveness of traditional cultivation models.Additionally,the impact of the three-dimensional cultivation mode on sales was analyzed,examining its market adaptability and competitiveness,as well as its advantages in expanding sales channels and market coverage.The study also focused on the promoting effect of diversified sales models on the Suzhou tea industry,including direct consumption market development,tea processing product development and promotion,and the integration of tea culture and the tourism industry.To ensure sustainable development,the article evaluates the environmental impact,economic feasibility,social benefits,and farmer benefits of the three-dimensional cultivation model.Finally,the prospects for the development of the Suzhou tea industry were discussed,and the positioning and response strategies of the threedimensional cultivation model were proposed.
基金This work was supported by Research Grants Council of Hong Kong(CityU-11205221).
文摘This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.
文摘This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topologies as a continuous-time Markov process and taking the distributed delays into consideration,a novel distributed containment observer is proposed to estimate the convex hull spanned by the leaders'states.A novel distributed output feedback containment controller is then designed without using the prior knowledge of distributed delays.By constructing a novel switching Lyapunov functional,the output containment control problem is then solved in the sense of mean square under an easily-verifiable sufficient condition.Finally,two numerical examples are given to show the effectiveness of the proposed controller.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金supported by the National Natural Science Foundation of China(61873219)。
文摘This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.
基金supported by the National Science Fund for Distinguished Young Scholars (62225303)the Fundamental Research Funds for the Central Universities (buctrc202201)+1 种基金China Scholarship Council,and High Performance Computing PlatformCollege of Information Science and Technology,Beijing University of Chemical Technology。
文摘In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62005108 and 62205134)the National Key Research and Development Program of China(Grant No.2022YFC2807701)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(Grant Nos.20KJB140009 and 21KJB140008)。
文摘This study established a novel method for the simultaneous detection of two-component gases.Radio frequency(RF)white noise disturbance laser current and wavelength modulation were simultaneously used to improve the off-axis integrated cavity output spectroscopy technique,and a high-precision dual modulation OA-ICOS(RF-WM-OA-ICOS)system was established.The two laser beams were coupled into one laser beam that was applied incident to the cavity of RF-WM-OA-ICOS system.The second harmonic signals of CH_(4)and CO_(2)gas simultaneously appeared in the rising or falling edge of a triangular wave.This method was used to measure CH_(4)and CO_(2)with different concentrations.The results indicated that the proposed system has high stability and can accurately and simultaneously measure the concentrations of CH_(4)and CO_(2),with an optimal integration time of 220 s.The minimum detection limit was 10 ppb for CH_(4)and 1.5 ppm for CO_(2).The corresponding noise equivalent absorption sensitivity values were calculated as 2.67×10^(-13)cm^(-1)·Hz^(-1/2)and 5.18×10^(-11)cm^(-1)·Hz^(-1/2),respectively.The proposed dual-component gas simultaneous detection method can also be used for high-precision simultaneous detection of other gases.Therefore,this study may serve as a reference for developing portable multicomponent gas analyzers.
文摘In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.
基金supported in part by the National Natural Science Foundation of China(61933012,62273064,61991400,61991403,62250710167,61860206008,62203078)the National Key Research and Development Program of China(2023YFA1011803)+2 种基金the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0588)the Innovation Support Program for Inter national Students Returning to China(cx2022016)the Central University Project(2022CDJKYJH019).
文摘It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs to be accommodated and only system output is available for feedback.Several key design innovations are proposed to circumvent the aforementioned technical difficulties,including the employment of state estimation filters with event-triggered mechanism,the construction of a novel performance scaling function and an error transformation.In contrast to most existing performance based works where the stability is contingent on initial conditions and the maximum allowable steady-state tracking precision can only be guaranteed at some unknown(theoretically infinite)time,in this work the output of the system is ensured to synchronize with the desired trajectory with arbitrarily pre-assignable convergence rate and arbitrarily pre-specified precision within prescribed time,using output only with lower cost of sensing and communication.In addition,all the closed-loop signals are ensured to be globally uniformly bounded under the proposed control method.The merits of the designed control scheme are confirmed by numerical simulation on a ship model.
文摘Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.
文摘To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.
基金supported in part by the National Science Fund for Excellent Young Scholars of China(62222317)the National Science Foundation of China(62303492)+3 种基金the Major Science and Technology Projects in Hunan Province(2021GK1030)the Science and Technology Innovation Program of Hunan Province(2022WZ1001)the Key Research and Development Program of Hunan Province(2023GK2023)the Fundamental Research Funds for the Central Universities of Central South University(2024ZZTS0116)。
文摘This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.
基金funded by the National Natural Science Foundation of China(42171004)the Key Research and Development Program in Shaanxi Province,China(2021ZDLSF05-02)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0403)。
文摘Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.