A contactless slipring (CS) system utilizing inductive-power-transfer (IPT) technology is a good candidate for traditional mechanical slipring assemblies. However, suffering from the high harmonic currents in strong c...A contactless slipring (CS) system utilizing inductive-power-transfer (IPT) technology is a good candidate for traditional mechanical slipring assemblies. However, suffering from the high harmonic currents in strong coupling CS systems, the output power will deviate from the theoretical values estimated by the fundamental harmonic approximation (FHA) and its extension method, i.e., E-FHA, in which the power is transferred by both the fundamental current and the high order harmonic currents. In order to achieve high precise output estimation, a unified analysis is proposed in this paper. First, “Fundamental-harmonic Double Resonance Phenomenon” is revealed via impedance analysis, to address the nature of the high harmonic currents in strong coupling systems. Then, a unified output current expression owning high precision is derived, and followed by a unified fundamental load impedance. Discussions show that both the output and the fundamental load impedance of FHA, and E-FHA are the special cases of the unified expressions proposed. FHA and E-FHA are precise enough for the loose coupling system, whereas the proposed method is indispensable for the strong coupling system with k>0.4 . Finally, simulations and experimental measurements of a 1.6kW CS system, as well as the comparative studies related to FHA, E-FHA, and the proposed method, are presented, indicating that the proposed method is effective for high precise output estimation.展开更多
The purpose of this paper is to present a novel topology optimization approach to control precisely the output loads under static loads and harmonic excitations.We introduce the Artificial Bar Element(ABE)at the desig...The purpose of this paper is to present a novel topology optimization approach to control precisely the output loads under static loads and harmonic excitations.We introduce the Artificial Bar Element(ABE)at the designated output positions,where the output loads are equivalently measured and constrained with the nodal displacements of ABE.Optimization model is then formulated considering the output load constraints as well as the minimization of strain energy and dynamic displacement responses respectively under the static and dynamic conditions.The influences of the ABEs stiffness,different material usages of the design domain,widths of the output loads constraint intervals and variation ratios of output loads are discussed in detail.The proposed method is verified with several numerical examples with clear and reasonable load transfer paths.展开更多
An ultra-highly precise and long-term stable frequency transmission system over 120 km commercial fiber link has been proposed and experimentally demonstrated. This system is based on digital output compensation techn...An ultra-highly precise and long-term stable frequency transmission system over 120 km commercial fiber link has been proposed and experimentally demonstrated. This system is based on digital output compensation technique to suppress phase fluctuations during the frequency transmission process. A mode-locked erbium-doped fiber laser driven by a hydrogen maser serves as an optical transmitter. Moreover, a dense wavelength division multiplexing system is able to separate forward and backward signals with reflection effect excluded. The ultimate fractional frequency instabilities for the long-distance frequency distributed system are up to 3.14×10^(-15) at 1 s and 2.96×10^(-19) at 10 000 s, respectively.展开更多
基金the National Natural Science Foundation of China under Grants 51677086 and 51777093.
文摘A contactless slipring (CS) system utilizing inductive-power-transfer (IPT) technology is a good candidate for traditional mechanical slipring assemblies. However, suffering from the high harmonic currents in strong coupling CS systems, the output power will deviate from the theoretical values estimated by the fundamental harmonic approximation (FHA) and its extension method, i.e., E-FHA, in which the power is transferred by both the fundamental current and the high order harmonic currents. In order to achieve high precise output estimation, a unified analysis is proposed in this paper. First, “Fundamental-harmonic Double Resonance Phenomenon” is revealed via impedance analysis, to address the nature of the high harmonic currents in strong coupling systems. Then, a unified output current expression owning high precision is derived, and followed by a unified fundamental load impedance. Discussions show that both the output and the fundamental load impedance of FHA, and E-FHA are the special cases of the unified expressions proposed. FHA and E-FHA are precise enough for the loose coupling system, whereas the proposed method is indispensable for the strong coupling system with k>0.4 . Finally, simulations and experimental measurements of a 1.6kW CS system, as well as the comparative studies related to FHA, E-FHA, and the proposed method, are presented, indicating that the proposed method is effective for high precise output estimation.
基金supported by National Key Research and Development Program(No.2017YFB1102800)NSFC for Excellent Young Scholars(No.11722219)Key Project of NSFC(Nos.51790171,5171101743)
文摘The purpose of this paper is to present a novel topology optimization approach to control precisely the output loads under static loads and harmonic excitations.We introduce the Artificial Bar Element(ABE)at the designated output positions,where the output loads are equivalently measured and constrained with the nodal displacements of ABE.Optimization model is then formulated considering the output load constraints as well as the minimization of strain energy and dynamic displacement responses respectively under the static and dynamic conditions.The influences of the ABEs stiffness,different material usages of the design domain,widths of the output loads constraint intervals and variation ratios of output loads are discussed in detail.The proposed method is verified with several numerical examples with clear and reasonable load transfer paths.
基金supported by the National Natural Science Foundation of China(Nos.61571244 and 61501262)the Science and Technology Project of Tianjin(No.16YFZCSF00540)the Natural Science Foundation of Tianjin(No.15JCYBJC51600)
文摘An ultra-highly precise and long-term stable frequency transmission system over 120 km commercial fiber link has been proposed and experimentally demonstrated. This system is based on digital output compensation technique to suppress phase fluctuations during the frequency transmission process. A mode-locked erbium-doped fiber laser driven by a hydrogen maser serves as an optical transmitter. Moreover, a dense wavelength division multiplexing system is able to separate forward and backward signals with reflection effect excluded. The ultimate fractional frequency instabilities for the long-distance frequency distributed system are up to 3.14×10^(-15) at 1 s and 2.96×10^(-19) at 10 000 s, respectively.