This paper is to explore further results for total measurable fault information-based residual(ToMFIR) approach to fault detection in dynamic systems.The ToMFIR contains the essential fault information and remains u...This paper is to explore further results for total measurable fault information-based residual(ToMFIR) approach to fault detection in dynamic systems.The ToMFIR contains the essential fault information and remains unaffected by control actions in a closed-loop system.It is composed of controller residual and output residual and some of further results are developed in frequency domain.Besides the ability of detecting actuator and sensor faults,it is able to detect faults/failures resulting from the computer used for control purpose that generates control signals.Currently,all of existing fault detection schemes cannot achieve the same task at all.A practical DC motor example,with a PID controller,is used to demonstrate the effectiveness of the ToMFIR-based fault detection.A comparison with the standard observer-based technique is also provided.展开更多
文摘This paper is to explore further results for total measurable fault information-based residual(ToMFIR) approach to fault detection in dynamic systems.The ToMFIR contains the essential fault information and remains unaffected by control actions in a closed-loop system.It is composed of controller residual and output residual and some of further results are developed in frequency domain.Besides the ability of detecting actuator and sensor faults,it is able to detect faults/failures resulting from the computer used for control purpose that generates control signals.Currently,all of existing fault detection schemes cannot achieve the same task at all.A practical DC motor example,with a PID controller,is used to demonstrate the effectiveness of the ToMFIR-based fault detection.A comparison with the standard observer-based technique is also provided.