This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analyti...This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.展开更多
This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions betwe...This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions between outriggers and core wall as well as the finite rigidities of outriggers are also considered. One case study was carried out to analyze the horizontal top deflection and the mutation of the restraining moments caused by the variation of outrigger location. The results showed that the method adopted in the paper is simple and reasonable. Some conclusions are valuable to the safety design of high-rise building structures.展开更多
An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is ...An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is performed for several values of asymmetric outrigger configuration and hull separation, altering the Froude number in the range 0.3–0.9. Our results indicate that remarkable changes in resistance require notable changes in transverse distance values (hull separation) when wave interference may occur. In addition, there is no single configuration that consistently outperforms the other configurations across the entire speed range and the optimum interference factor -0.2 appears at a Froude number of 0.45 in S/L=0.33 with the outrigger outer position: asymmetric outboard for A3 configuration.展开更多
Trimaran hydrodynamics have been an important research topic in recent years.Trimarans have even been chosen for naval surface combatants.In this case,investigation of a trimaran with different outrigger positions is ...Trimaran hydrodynamics have been an important research topic in recent years.Trimarans have even been chosen for naval surface combatants.In this case,investigation of a trimaran with different outrigger positions is important and necessary for better hydrodynamic performance.This paper focuses on the numerical investigation of trimaran hydrodynamics.The trimaran model used in this study is a 1/80 scale high-speed displacement frigate-type concept developed by the Center for Innovation in Ship Design(CISD)at Naval Surface Warfare Center,Carderock Division(NSWCCD).The numerical simulations were conducted for different outrigger positions at low and moderate Froude numbers by using commercial CFD software solving URANS equations.A verification and validation study was carried out for the numerical method in one configuration and one ship velocity.The existing experimental results for the trimaran resistance in the literature were used for validation.Five different outrigger positions were analyzed and the form factor of each configuration was calculated by the Prohaska method.The total resistance was decomposed to its components using the form factor.The interference factor was calculated for each configuration in terms of total resistance,residual resistance and wave resistance.Also,wave profiles using the longitudinal wave cuts in different locations were obtained both numerically and experimentally.It was concluded that the outrigger position had different effects on the interference,total resistance and wave profile at different Froude numbers.It was also shown that the CFD results were in good agreement with the experimental data in all configurations.In conclusion,this study presents the results of interference effects for different trimaran configurations in terms of wave resistance in addition to the total resistance and residual resistance.The numerical method was validated not only with the total resistance test data but also the longitudinal wave profiles along the hull.展开更多
There are many structural lateral systems used in tall buildings: rigid frames, braced frames, shear walls, tubular structures and core structures. The outrigger and belt truss systems are efficient structures for dr...There are many structural lateral systems used in tall buildings: rigid frames, braced frames, shear walls, tubular structures and core structures. The outrigger and belt truss systems are efficient structures for drift control and base moment reduction in tall buildings where the core alone is not rigid enough to resist lateral loads. Perimeter columns are mobilized for increasing the effective width of the structure, and they developed tension in the windward columns and compression in the leeward columns. Optimum locations for the outriggers have been studied because of the influence on the top displacement and base moment in the core. It was analyzed the optimal position for two to seven outriggers and belt trusses, aiming to achieve minimum bending moment and minimum drift.展开更多
This paper proposes kriging metamodels for the dynamic response of high-rise buildings with outrigger systems subject to seismic and wind loads.Three types of outrigger systems are considered.Three-dimensional(3D)fini...This paper proposes kriging metamodels for the dynamic response of high-rise buildings with outrigger systems subject to seismic and wind loads.Three types of outrigger systems are considered.Three-dimensional(3D)finite element models of high-rise buildings with outrigger systems are developed using ANSYS.Data generated from the finite element models are used to develop the proposed kriging metamodels.A sensitivity analysis is then carried out to determine the most sensitive input parameters in kriging metamodels to gain insights and suggest possible future developments.The proposed kriging metamodels are used to develop fragility estimates for high-rise buildings with three types of outrigger systems under seismic and wind loads.展开更多
基金973 Program under Grant under Grant No.2012CB723304It was partially supported by the Major Research Plan of the National Natural Science Foundation of China under Grant No.91315301-07+2 种基金in part by Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT13057the Ministry of Education Program for New Century Excellent Talents in University under Grant No.NCET-11-0914the Guangzhou Ram Scholar Program Grant No.10A032D
文摘This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.
基金Project supported by the National Natural Science Foundation of China (No. 50378041) and the Specialized Research Fund for theDoctoral Program of Higher Education (No. 20030487016), China
文摘This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions between outriggers and core wall as well as the finite rigidities of outriggers are also considered. One case study was carried out to analyze the horizontal top deflection and the mutation of the restraining moments caused by the variation of outrigger location. The results showed that the method adopted in the paper is simple and reasonable. Some conclusions are valuable to the safety design of high-rise building structures.
文摘An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is performed for several values of asymmetric outrigger configuration and hull separation, altering the Froude number in the range 0.3–0.9. Our results indicate that remarkable changes in resistance require notable changes in transverse distance values (hull separation) when wave interference may occur. In addition, there is no single configuration that consistently outperforms the other configurations across the entire speed range and the optimum interference factor -0.2 appears at a Froude number of 0.45 in S/L=0.33 with the outrigger outer position: asymmetric outboard for A3 configuration.
基金The second author was supported by the Scientific and Technological Research Council of Turkey(TUBITAK)2219 International Postdoctoral Research Fellowship Program。
文摘Trimaran hydrodynamics have been an important research topic in recent years.Trimarans have even been chosen for naval surface combatants.In this case,investigation of a trimaran with different outrigger positions is important and necessary for better hydrodynamic performance.This paper focuses on the numerical investigation of trimaran hydrodynamics.The trimaran model used in this study is a 1/80 scale high-speed displacement frigate-type concept developed by the Center for Innovation in Ship Design(CISD)at Naval Surface Warfare Center,Carderock Division(NSWCCD).The numerical simulations were conducted for different outrigger positions at low and moderate Froude numbers by using commercial CFD software solving URANS equations.A verification and validation study was carried out for the numerical method in one configuration and one ship velocity.The existing experimental results for the trimaran resistance in the literature were used for validation.Five different outrigger positions were analyzed and the form factor of each configuration was calculated by the Prohaska method.The total resistance was decomposed to its components using the form factor.The interference factor was calculated for each configuration in terms of total resistance,residual resistance and wave resistance.Also,wave profiles using the longitudinal wave cuts in different locations were obtained both numerically and experimentally.It was concluded that the outrigger position had different effects on the interference,total resistance and wave profile at different Froude numbers.It was also shown that the CFD results were in good agreement with the experimental data in all configurations.In conclusion,this study presents the results of interference effects for different trimaran configurations in terms of wave resistance in addition to the total resistance and residual resistance.The numerical method was validated not only with the total resistance test data but also the longitudinal wave profiles along the hull.
文摘There are many structural lateral systems used in tall buildings: rigid frames, braced frames, shear walls, tubular structures and core structures. The outrigger and belt truss systems are efficient structures for drift control and base moment reduction in tall buildings where the core alone is not rigid enough to resist lateral loads. Perimeter columns are mobilized for increasing the effective width of the structure, and they developed tension in the windward columns and compression in the leeward columns. Optimum locations for the outriggers have been studied because of the influence on the top displacement and base moment in the core. It was analyzed the optimal position for two to seven outriggers and belt trusses, aiming to achieve minimum bending moment and minimum drift.
基金funded by the National Natural Science Founda-tion of China(Grant No.52025083)the financial support received from this organization and China Scholar-ship Council during a visiting study in University of Illinois at Urbana-Champaign(No.201906260196).
文摘This paper proposes kriging metamodels for the dynamic response of high-rise buildings with outrigger systems subject to seismic and wind loads.Three types of outrigger systems are considered.Three-dimensional(3D)finite element models of high-rise buildings with outrigger systems are developed using ANSYS.Data generated from the finite element models are used to develop the proposed kriging metamodels.A sensitivity analysis is then carried out to determine the most sensitive input parameters in kriging metamodels to gain insights and suggest possible future developments.The proposed kriging metamodels are used to develop fragility estimates for high-rise buildings with three types of outrigger systems under seismic and wind loads.