Certain outsourcing services for agricultural management in China,such as pest control in grain production,have experienced prolonged sluggishness,contrasting with the relatively high level of outsourcing services obs...Certain outsourcing services for agricultural management in China,such as pest control in grain production,have experienced prolonged sluggishness,contrasting with the relatively high level of outsourcing services observed in harvesting,land preparation,and sowing.This study examines the feasibility of implementing whole-step outsourcing in grain production by conducting a case study of rice and maize production in Jiangsu,Jilin,and Sichuan provinces in China.The provision of outsourcing services hinges on two essential conditions:technological advancements fostering specialized production and economies of scale,coupled with a market size sufficient to realize the aforementioned potential economies of scale.The results showed that outsourcing pest control or harvesting services had varying economies of scale.The outsourcing services in pest control were less common than in harvesting services,and their marginal growth space of the economies of scale with technological change was also smaller.Determined by the operational characteristics of pest control itself,the market scale of its professional services is small.Therefore,achieving the whole-step outsourcing of grain production necessitates not only technological innovation but also effective policy interventions to overcome the constraints of market scale.Such interventions include(1)optimizing crop layouts between planning regions and reducing land fragmentation and(2)supplying timely and effective inter-regional agricultural information for service providers aided by information technology.展开更多
Outsourcing the k-Nearest Neighbor(kNN)classifier to the cloud is useful,yet it will lead to serious privacy leakage due to sensitive outsourced data and models.In this paper,we design,implement and evaluate a new sys...Outsourcing the k-Nearest Neighbor(kNN)classifier to the cloud is useful,yet it will lead to serious privacy leakage due to sensitive outsourced data and models.In this paper,we design,implement and evaluate a new system employing an outsourced privacy-preserving kNN Classifier Model based on Multi-Key Homomorphic Encryption(kNNCM-MKHE).We firstly propose a security protocol based on Multi-key Brakerski-Gentry-Vaikuntanathan(BGV)for collaborative evaluation of the kNN classifier provided by multiple model owners.Analyze the operations of kNN and extract basic operations,such as addition,multiplication,and comparison.It supports the computation of encrypted data with different public keys.At the same time,we further design a new scheme that outsources evaluation works to a third-party evaluator who should not have access to the models and data.In the evaluation process,each model owner encrypts the model and uploads the encrypted models to the evaluator.After receiving encrypted the kNN classifier and the user’s inputs,the evaluator calculated the aggregated results.The evaluator will perform a secure computing protocol to aggregate the number of each class label.Then,it sends the class labels with their associated counts to the user.Each model owner and user encrypt the result together.No information will be disclosed to the evaluator.The experimental results show that our new system can securely allow multiple model owners to delegate the evaluation of kNN classifier.展开更多
The advent of Industry 4.0 has compelled businesses to adopt digital approaches that combine software toenhance production efficiency. In this rapidly evolving market, software development is an ongoing process thatmu...The advent of Industry 4.0 has compelled businesses to adopt digital approaches that combine software toenhance production efficiency. In this rapidly evolving market, software development is an ongoing process thatmust be tailored to meet the dynamic needs of enterprises. However, internal research and development can beprohibitively expensive, driving many enterprises to outsource software development and upgrades to externalservice providers. This paper presents a software upgrade outsourcing model for enterprises and service providersthat accounts for the impact of market fluctuations on software adaptability. To mitigate the risk of adverseselection due to asymmetric information about the service provider’s cost and asymmetric information aboutthe enterprise’s revenues, we propose pay-per-time and revenue-sharing contracts in two distinct informationasymmetry scenarios. These two contracts specify the time and transfer payments for software upgrades. Througha comparative analysis of the optimal solutions under the two contracts and centralized decision-making withfull-information, we examine the characteristics of the solutions under two information asymmetry scenarios andanalyze the incentive effects of the two contracts on the various stakeholders. Overall, our study offers valuableinsights for firms seeking to optimize their outsourcing strategies and maximize their returns on investment insoftware upgrades.展开更多
With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.Th...With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations.展开更多
Objective To explore the current situation of human resource management outsourcing in China’s pharmaceutical enterprises,and to put forward some suggestions for enterprises and the government.Methods The current sit...Objective To explore the current situation of human resource management outsourcing in China’s pharmaceutical enterprises,and to put forward some suggestions for enterprises and the government.Methods The current situation of human resource management outsourcing in China’s pharmaceutical enterprises was analyzed through the method of literature research.Results and Conclusion At present,the status of human resource management outsourcing in China’s pharmaceutical companies is that the level of human resource outsourcing companies is not high,and there are no relevant industry norms and laws.The information asymmetry between pharmaceutical enterprises and outsourcing companies results in adverse selection and moral hazard.Besides,the different culture of pharmaceutical enterprises and outsourcing companies leads to inefficient communication between enterprises and employee.To solve these problems,the government should promote and improve industry norms and laws to regulate the market.In addition,enterprises should clarify the motivation for outsourcing and make good decision on the outsourcing content.Meanwhile,enterprises should strengthen communication with employees to eliminate employees’concerns.展开更多
A scheme that can realize homomorphic Turing- equivalent privacy-preserving computations is proposed, where the encoding of the Turing machine is independent of its inputs and running time. Several extended private in...A scheme that can realize homomorphic Turing- equivalent privacy-preserving computations is proposed, where the encoding of the Turing machine is independent of its inputs and running time. Several extended private information retrieval protocols based on fully homomorphic encryption are designed, so that the reading and writing of the tape of the Turing machine, as well as the evaluation of the transition function of the Turing machine, can be performed by the permitted Boolean circuits of fully homomorphic encryption schemes. This scheme overwhelms the Turing-machine-to- circuit conversion approach, which also implements the Turing-equivalent computation. The encoding of a Turing- machine-to-circuit conversion approach is dependent on both the input data and the worst-case runtime. The proposed scheme efficiently provides the confidentiality of both program and data of the delegator in the delegator-worker model of outsourced computation against semi-honest workers.展开更多
Cloud computing is very useful for big data owner who doesn't want to manage IT infrastructure and big data technique details. However, it is hard for big data owner to trust multi-layer outsourced big data system...Cloud computing is very useful for big data owner who doesn't want to manage IT infrastructure and big data technique details. However, it is hard for big data owner to trust multi-layer outsourced big data system in cloud environment and to verify which outsourced service leads to the problem. Similarly, the cloud service provider cannot simply trust the data computation applications. At last,the verification data itself may also leak the sensitive information from the cloud service provider and data owner. We propose a new three-level definition of the verification, threat model, corresponding trusted policies based on different roles for outsourced big data system in cloud. We also provide two policy enforcement methods for building trusted data computation environment by measuring both the Map Reduce application and its behaviors based on trusted computing and aspect-oriented programming. To prevent sensitive information leakage from verification process,we provide a privacy-preserved verification method. Finally, we implement the TPTVer, a Trusted third Party based Trusted Verifier as a proof of concept system. Our evaluation and analysis show that TPTVer can provide trusted verification for multi-layered outsourced big data system in the cloud with low overhead.展开更多
Unauthorized tampering with outsourced data can result in significant losses for both data owner and users.Data integrity therefore becomes an important factor in outsourced data systems.In this paper,we address this ...Unauthorized tampering with outsourced data can result in significant losses for both data owner and users.Data integrity therefore becomes an important factor in outsourced data systems.In this paper,we address this problem and propose a scheme for verifying the integrity of outsourced data.We first propose a new authenticated data structure for authenticating membership queries in sets based on accumulators,and then show how to apply it to the problem of verifying the integrity of outsourced data.We also prove that our scheme is secure under the q-strong DiffieHellman assumption.More importantly,our scheme has the constant cost communication,meanwhile keeping other complexity measures constant.Compared to previous schemes based on accumulators,our scheme reduces update cost and so improves previous schemes based on accumulators.In addition,the experimental comparison shows that our scheme outperforms the previous schemes.展开更多
An outsource database is a database service provided by cloud computing companies.Using the outsource database can reduce the hardware and software's cost and also get more efficient and reliable data processing capa...An outsource database is a database service provided by cloud computing companies.Using the outsource database can reduce the hardware and software's cost and also get more efficient and reliable data processing capacity.However,the outsource database still has some challenges.If the service provider does not have sufficient confidence,there is the possibility of data leakage.The data may has user's privacy,so data leakage may cause data privacy leak.Based on this factor,to protect the privacy of data in the outsource database becomes very important.In the past,scholars have proposed k-anonymity to protect data privacy in the database.It lets data become anonymous to avoid data privacy leak.But k-anonymity has some problems,it is irreversible,and easier to be attacked by homogeneity attack and background knowledge attack.Later on,scholars have proposed some studies to solve homogeneity attack and background knowledge attack.But their studies still cannot recover back to the original data.In this paper,we propose a data anonymity method.It can be reversible and also prevent those two attacks.Our study is based on the proposed r-transform.It can be used on the numeric type of attributes in the outsource database.In the experiment,we discussed the time required to anonymize and recover data.Furthermore,we investigated the defense against homogeneous attack and background knowledge attack.At the end,we summarized the proposed method and future researches.展开更多
The successful execution and management of Offshore Software Maintenance Outsourcing(OSMO)can be very beneficial for OSMO vendors and the OSMO client.Although a lot of research on software outsourcing is going on,most...The successful execution and management of Offshore Software Maintenance Outsourcing(OSMO)can be very beneficial for OSMO vendors and the OSMO client.Although a lot of research on software outsourcing is going on,most of the existing literature on offshore outsourcing deals with the outsourcing of software development only.Several frameworks have been developed focusing on guiding software systemmanagers concerning offshore software outsourcing.However,none of these studies delivered comprehensive guidelines for managing the whole process of OSMO.There is a considerable lack of research working on managing OSMO from a vendor’s perspective.Therefore,to find the best practices for managing an OSMO process,it is necessary to further investigate such complex and multifaceted phenomena from the vendor’s perspective.This study validated the preliminary OSMO process model via a case study research approach.The results showed that the OSMO process model is applicable in an industrial setting with few changes.The industrial data collected during the case study enabled this paper to extend the preliminary OSMO process model.The refined version of the OSMO processmodel has four major phases including(i)Project Assessment,(ii)SLA(iii)Execution,and(iv)Risk.展开更多
Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different w...Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different ways,including time savings,cost savings,and improving the software quality and value.One of the hardest challenges for the OSMO vendor is to choose a suitable project among several clients’projects.The goal of the current study is to recommend a machine learning-based decision support system that OSMO vendors can utilize to forecast or assess the project of OSMO clients.The projects belong to OSMO vendors,having offices in developing countries while providing services to developed countries.In the current study,Extreme Learning Machine’s(ELM’s)variant called Deep Extreme Learning Machines(DELMs)is used.A novel dataset consisting of 195 projects data is proposed to train the model and to evaluate the overall efficiency of the proposed model.The proposed DELM’s based model evaluations achieved 90.017%training accuracy having a value with 1.412×10^(-3) Root Mean Square Error(RMSE)and 85.772%testing accuracy with 1.569×10^(-3) RMSE with five DELMs hidden layers.The results express that the suggested model has gained a notable recognition rate in comparison to any previous studies.The current study also concludes DELMs as the most applicable and useful technique for OSMO client’s project assessment.展开更多
To address the issue of information asymmetry between the two parties and moral hazard among service providers in the process of service outsourcing,this paper builds the Stackelberg game model based on the principal-...To address the issue of information asymmetry between the two parties and moral hazard among service providers in the process of service outsourcing,this paper builds the Stackelberg game model based on the principal-agent framework,examines the dynamic game situation before the contract being signed,and develops four information models.The analysis reveals a Pareto improvement in the game’s Nash equilibrium when comparing the four models from the standpoint of the supply chain.In the complete information scenario,the service level of the service provider,the customer company’s incentive effectiveness,and the supply chain system’s ultimate profit are all maximized.Furthermore,a coordinating mechanism for disposable profit is built in this study.The paper then suggests a blockchain-based architecture for the service outsourcing process supervision and a distributed incentive mechanism under the coordination mechanism in response to the inadequacy of the principal-agent theory to address the information asymmetry problem and the moral hazard problem.The experiment’s end findings demonstrate that both parties can benefit from the coordination mechanism,and the application of blockchain technology can resolve these issues and effectively encourage service providers.展开更多
基金supported by the National Natural Science Foundation of China(72103088)the National Social Science Fund of China(20&ZD094 and 21&ZD101).
文摘Certain outsourcing services for agricultural management in China,such as pest control in grain production,have experienced prolonged sluggishness,contrasting with the relatively high level of outsourcing services observed in harvesting,land preparation,and sowing.This study examines the feasibility of implementing whole-step outsourcing in grain production by conducting a case study of rice and maize production in Jiangsu,Jilin,and Sichuan provinces in China.The provision of outsourcing services hinges on two essential conditions:technological advancements fostering specialized production and economies of scale,coupled with a market size sufficient to realize the aforementioned potential economies of scale.The results showed that outsourcing pest control or harvesting services had varying economies of scale.The outsourcing services in pest control were less common than in harvesting services,and their marginal growth space of the economies of scale with technological change was also smaller.Determined by the operational characteristics of pest control itself,the market scale of its professional services is small.Therefore,achieving the whole-step outsourcing of grain production necessitates not only technological innovation but also effective policy interventions to overcome the constraints of market scale.Such interventions include(1)optimizing crop layouts between planning regions and reducing land fragmentation and(2)supplying timely and effective inter-regional agricultural information for service providers aided by information technology.
基金supported in part by the National Natural Science Foundation of China under Grant No.61872069in part by the Fundamental Research Funds for the Central Universities under Grant N2017012.
文摘Outsourcing the k-Nearest Neighbor(kNN)classifier to the cloud is useful,yet it will lead to serious privacy leakage due to sensitive outsourced data and models.In this paper,we design,implement and evaluate a new system employing an outsourced privacy-preserving kNN Classifier Model based on Multi-Key Homomorphic Encryption(kNNCM-MKHE).We firstly propose a security protocol based on Multi-key Brakerski-Gentry-Vaikuntanathan(BGV)for collaborative evaluation of the kNN classifier provided by multiple model owners.Analyze the operations of kNN and extract basic operations,such as addition,multiplication,and comparison.It supports the computation of encrypted data with different public keys.At the same time,we further design a new scheme that outsources evaluation works to a third-party evaluator who should not have access to the models and data.In the evaluation process,each model owner encrypts the model and uploads the encrypted models to the evaluator.After receiving encrypted the kNN classifier and the user’s inputs,the evaluator calculated the aggregated results.The evaluator will perform a secure computing protocol to aggregate the number of each class label.Then,it sends the class labels with their associated counts to the user.Each model owner and user encrypt the result together.No information will be disclosed to the evaluator.The experimental results show that our new system can securely allow multiple model owners to delegate the evaluation of kNN classifier.
文摘The advent of Industry 4.0 has compelled businesses to adopt digital approaches that combine software toenhance production efficiency. In this rapidly evolving market, software development is an ongoing process thatmust be tailored to meet the dynamic needs of enterprises. However, internal research and development can beprohibitively expensive, driving many enterprises to outsource software development and upgrades to externalservice providers. This paper presents a software upgrade outsourcing model for enterprises and service providersthat accounts for the impact of market fluctuations on software adaptability. To mitigate the risk of adverseselection due to asymmetric information about the service provider’s cost and asymmetric information aboutthe enterprise’s revenues, we propose pay-per-time and revenue-sharing contracts in two distinct informationasymmetry scenarios. These two contracts specify the time and transfer payments for software upgrades. Througha comparative analysis of the optimal solutions under the two contracts and centralized decision-making withfull-information, we examine the characteristics of the solutions under two information asymmetry scenarios andanalyze the incentive effects of the two contracts on the various stakeholders. Overall, our study offers valuableinsights for firms seeking to optimize their outsourcing strategies and maximize their returns on investment insoftware upgrades.
文摘With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations.
基金Graduate Education and Teaching Reform Project of Shenyang Pharmaceutical University(2020)(No.YJSJG200301).
文摘Objective To explore the current situation of human resource management outsourcing in China’s pharmaceutical enterprises,and to put forward some suggestions for enterprises and the government.Methods The current situation of human resource management outsourcing in China’s pharmaceutical enterprises was analyzed through the method of literature research.Results and Conclusion At present,the status of human resource management outsourcing in China’s pharmaceutical companies is that the level of human resource outsourcing companies is not high,and there are no relevant industry norms and laws.The information asymmetry between pharmaceutical enterprises and outsourcing companies results in adverse selection and moral hazard.Besides,the different culture of pharmaceutical enterprises and outsourcing companies leads to inefficient communication between enterprises and employee.To solve these problems,the government should promote and improve industry norms and laws to regulate the market.In addition,enterprises should clarify the motivation for outsourcing and make good decision on the outsourcing content.Meanwhile,enterprises should strengthen communication with employees to eliminate employees’concerns.
基金The National Basic Research Program of China(973Program)(No.2013CB338003)
文摘A scheme that can realize homomorphic Turing- equivalent privacy-preserving computations is proposed, where the encoding of the Turing machine is independent of its inputs and running time. Several extended private information retrieval protocols based on fully homomorphic encryption are designed, so that the reading and writing of the tape of the Turing machine, as well as the evaluation of the transition function of the Turing machine, can be performed by the permitted Boolean circuits of fully homomorphic encryption schemes. This scheme overwhelms the Turing-machine-to- circuit conversion approach, which also implements the Turing-equivalent computation. The encoding of a Turing- machine-to-circuit conversion approach is dependent on both the input data and the worst-case runtime. The proposed scheme efficiently provides the confidentiality of both program and data of the delegator in the delegator-worker model of outsourced computation against semi-honest workers.
基金partially supported by grants from the China 863 High-tech Program (Grant No. 2015AA016002)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20131103120001)+2 种基金the National Key Research and Development Program of China (Grant No. 2016YFB0800204)the National Science Foundation of China (No. 61502017)the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201710005024)
文摘Cloud computing is very useful for big data owner who doesn't want to manage IT infrastructure and big data technique details. However, it is hard for big data owner to trust multi-layer outsourced big data system in cloud environment and to verify which outsourced service leads to the problem. Similarly, the cloud service provider cannot simply trust the data computation applications. At last,the verification data itself may also leak the sensitive information from the cloud service provider and data owner. We propose a new three-level definition of the verification, threat model, corresponding trusted policies based on different roles for outsourced big data system in cloud. We also provide two policy enforcement methods for building trusted data computation environment by measuring both the Map Reduce application and its behaviors based on trusted computing and aspect-oriented programming. To prevent sensitive information leakage from verification process,we provide a privacy-preserved verification method. Finally, we implement the TPTVer, a Trusted third Party based Trusted Verifier as a proof of concept system. Our evaluation and analysis show that TPTVer can provide trusted verification for multi-layered outsourced big data system in the cloud with low overhead.
基金supported in part by National Natural Science Foundation of China under Grant (61070164,61272415)Natural Science Foundation of Guangdong Province, China under Grant (S2012010008767)Science and Technology Planning Project of Guangdong Province, China under Grant (2013B010401015)
文摘Unauthorized tampering with outsourced data can result in significant losses for both data owner and users.Data integrity therefore becomes an important factor in outsourced data systems.In this paper,we address this problem and propose a scheme for verifying the integrity of outsourced data.We first propose a new authenticated data structure for authenticating membership queries in sets based on accumulators,and then show how to apply it to the problem of verifying the integrity of outsourced data.We also prove that our scheme is secure under the q-strong DiffieHellman assumption.More importantly,our scheme has the constant cost communication,meanwhile keeping other complexity measures constant.Compared to previous schemes based on accumulators,our scheme reduces update cost and so improves previous schemes based on accumulators.In addition,the experimental comparison shows that our scheme outperforms the previous schemes.
文摘An outsource database is a database service provided by cloud computing companies.Using the outsource database can reduce the hardware and software's cost and also get more efficient and reliable data processing capacity.However,the outsource database still has some challenges.If the service provider does not have sufficient confidence,there is the possibility of data leakage.The data may has user's privacy,so data leakage may cause data privacy leak.Based on this factor,to protect the privacy of data in the outsource database becomes very important.In the past,scholars have proposed k-anonymity to protect data privacy in the database.It lets data become anonymous to avoid data privacy leak.But k-anonymity has some problems,it is irreversible,and easier to be attacked by homogeneity attack and background knowledge attack.Later on,scholars have proposed some studies to solve homogeneity attack and background knowledge attack.But their studies still cannot recover back to the original data.In this paper,we propose a data anonymity method.It can be reversible and also prevent those two attacks.Our study is based on the proposed r-transform.It can be used on the numeric type of attributes in the outsource database.In the experiment,we discussed the time required to anonymize and recover data.Furthermore,we investigated the defense against homogeneous attack and background knowledge attack.At the end,we summarized the proposed method and future researches.
基金This research is fully funded byUniversiti Malaysia Terengganu under the research Grant(PGRG).
文摘The successful execution and management of Offshore Software Maintenance Outsourcing(OSMO)can be very beneficial for OSMO vendors and the OSMO client.Although a lot of research on software outsourcing is going on,most of the existing literature on offshore outsourcing deals with the outsourcing of software development only.Several frameworks have been developed focusing on guiding software systemmanagers concerning offshore software outsourcing.However,none of these studies delivered comprehensive guidelines for managing the whole process of OSMO.There is a considerable lack of research working on managing OSMO from a vendor’s perspective.Therefore,to find the best practices for managing an OSMO process,it is necessary to further investigate such complex and multifaceted phenomena from the vendor’s perspective.This study validated the preliminary OSMO process model via a case study research approach.The results showed that the OSMO process model is applicable in an industrial setting with few changes.The industrial data collected during the case study enabled this paper to extend the preliminary OSMO process model.The refined version of the OSMO processmodel has four major phases including(i)Project Assessment,(ii)SLA(iii)Execution,and(iv)Risk.
基金fully funded by Universiti Teknologi Malaysia under the UTM Fundamental Research Grant(UTMFR)with Cost Center No Q.K130000.2556.21H14.
文摘Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different ways,including time savings,cost savings,and improving the software quality and value.One of the hardest challenges for the OSMO vendor is to choose a suitable project among several clients’projects.The goal of the current study is to recommend a machine learning-based decision support system that OSMO vendors can utilize to forecast or assess the project of OSMO clients.The projects belong to OSMO vendors,having offices in developing countries while providing services to developed countries.In the current study,Extreme Learning Machine’s(ELM’s)variant called Deep Extreme Learning Machines(DELMs)is used.A novel dataset consisting of 195 projects data is proposed to train the model and to evaluate the overall efficiency of the proposed model.The proposed DELM’s based model evaluations achieved 90.017%training accuracy having a value with 1.412×10^(-3) Root Mean Square Error(RMSE)and 85.772%testing accuracy with 1.569×10^(-3) RMSE with five DELMs hidden layers.The results express that the suggested model has gained a notable recognition rate in comparison to any previous studies.The current study also concludes DELMs as the most applicable and useful technique for OSMO client’s project assessment.
基金Province Keys Research and Development Program of Shandong(Soft Science Projects)[No.2021RKY01007]Major Scientific and Technological Innovation Projects in Shandong Province[No.2018CXGC0703].
文摘To address the issue of information asymmetry between the two parties and moral hazard among service providers in the process of service outsourcing,this paper builds the Stackelberg game model based on the principal-agent framework,examines the dynamic game situation before the contract being signed,and develops four information models.The analysis reveals a Pareto improvement in the game’s Nash equilibrium when comparing the four models from the standpoint of the supply chain.In the complete information scenario,the service level of the service provider,the customer company’s incentive effectiveness,and the supply chain system’s ultimate profit are all maximized.Furthermore,a coordinating mechanism for disposable profit is built in this study.The paper then suggests a blockchain-based architecture for the service outsourcing process supervision and a distributed incentive mechanism under the coordination mechanism in response to the inadequacy of the principal-agent theory to address the information asymmetry problem and the moral hazard problem.The experiment’s end findings demonstrate that both parties can benefit from the coordination mechanism,and the application of blockchain technology can resolve these issues and effectively encourage service providers.