The design of three-dimensional printing based conformal cooling channels(CCCs)in injection molding holds great significance.Compared to CCCs,conformal cooling(CC)cavity solutions show promise in delivering enhanced c...The design of three-dimensional printing based conformal cooling channels(CCCs)in injection molding holds great significance.Compared to CCCs,conformal cooling(CC)cavity solutions show promise in delivering enhanced cooling performance for plastic products,although they have been underexplored.In this research,CC cavity is designed within the mold geometry,reinforced by body-centered cubic(BCC)lattice structures to enhance mechanical strength.Three distinct BCC lattice variations have been integrated into the CC cavity:the BCC structure,BCC with cubes,and BCC with pillars.The thermal performances of the BCC lattice-added CC cavity are assessed numerically after experimental validation.To provide feasible solutions from viewpoints of thermal performances,various BCC lattice structure thicknesses are analyzed in the range of 0.8–1.2mm.Thermal simulation outcomes reveal that thicker lattice structures enhance mechanical strength but simultaneously lead to an increase in cooling time.Upon examining all the proposed CC cavity solutions supported by BCC,the cooling times range from 2.2 to 4 s,resulting in a reduction of 38.6%to 66.1%when compared to conventional straightdrilled channels.In contrast to CCCs,CC cavities have the potential to decrease the maximum temperature nonuniformity from 8.5 to 6 K.Nevertheless,the presence of lattice structures in CC cavity solutions results in an elevated pressure drop,reaching 2.8MPa,whereas the results for CCCs remain below2.1MPa.展开更多
An orthogoual experimental scheme was designed for optimizing a water-cooled structure of the divertor plate. There were three influencing factors: the radius R of the water- cooled pipe, and the pipe spacing L1 and ...An orthogoual experimental scheme was designed for optimizing a water-cooled structure of the divertor plate. There were three influencing factors: the radius R of the water- cooled pipe, and the pipe spacing L1 and L3. The influence rule of different factors on the cooling effect and thermal stress of the plate were studied, for which the influence rank was respectively R 〉 L1 〉 L3 and L3 〉 R 〉 L1. The highest temperature value decreased when R and L1 increased~ and the maximum thermal stress value dropped when R, L1 and L3 increased. The final optimized results can be summarized as: R equals 6 mm or 7 mm, L1 equals 19 mm, and L3 equals 20 mm. Compared with the initial design, the highest temperature value had a small decline~ and the maximum thermal stress value dropped by 19~ to 24~. So it was not ideal to improve the cooling effect by optimizing the geometry sizes of the water-cooled structure, even worse than increasing the flow speed, but it was very effective for dropping the maximum thermal stress value. The orthogoaal experimental method reduces the number of experiments by 80%, and thus it is feasible and effective to optimize the water-cooled structure of the divertor plate with the orthogonal theory.展开更多
In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scatt...In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions.展开更多
The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti- 43Al-9V-O. 3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, th...The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti- 43Al-9V-O. 3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, the partial γ + α2 twophase lamellar structure and granular γm phase. And the lanthanon Y existed as YAl2 phase and served as grain refined. The impact of different cooling rates on joint microstructure, fracture characteristic and tensile strength were investigated. The high cooling rate restrained the structural transformation and resulted in the ordering structure. The fracture of the joint was brittle cleavage fracture because the ordering structure went against restraining the crack propagation. With the decrease of cooling rate, the transformation amounts of lamellar structure increased, and the fracture presented the layered and crosslayered characteristic.展开更多
The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the ...The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the cooling rate is closely related to the structure and properties, and for the cast iron, the best comprehensive mechanical properties were obtained by forced air cooling with a cooling rate as about 7 ℃/s. The reason and regularity for the change of mechanical properties were analyzed.展开更多
Aim: To study the strength and microstructure of trace-Ti-bearing stracture steel. Materials and Methods: The strength and microstructure of the trace Ti bearing structure steel were studied by two kinds of controlled...Aim: To study the strength and microstructure of trace-Ti-bearing stracture steel. Materials and Methods: The strength and microstructure of the trace Ti bearing structure steel were studied by two kinds of controlled cooling simulation testing results in the first stage cooling and the last stage cooling after hot press deformation in the traceTi-bearing structure steel. Results: It showed that the ferrite grain size, the relative contribution of the involved strength and the mechanical strength were influenced more or less by different cooling rates. Both the refinement of ferrite grain and the increase of mechanical strength could be obtained by the proper decrease of water cooling interruption temperature (WTI) and coiling temperature (CT) in the first stage cooling or the proper increase of water cooling beginning temperature (WTB) and proper decrease of coiling temperature (CT) in the last stage cooling. Conclusion: The strength, the ferrite grain refinement and the yield tensile ratio in the first stage cooling process are much better than those in the last stage cooling process.展开更多
[Objective] This study aimed to predict the structure of protein OmpH from Pasteurella multocida C47-8 (PmC47-8) strain of yak. [Method] Online BLAST, signal peptide prediction, secondary structure prediction and pr...[Objective] This study aimed to predict the structure of protein OmpH from Pasteurella multocida C47-8 (PmC47-8) strain of yak. [Method] Online BLAST, signal peptide prediction, secondary structure prediction and protein characteristics of sequencing result of gene OmpH from PmC47-8 strain were analyzed. [Result] The similarities of gene OmpH from PmC47-8 with the published 81 OmpH genes were between 84% and 99%; a signal peptide was found with the cleavage sites between 20 and 21 in the polypeptide; secondary structure prediction showed that folding structure accounted for 49.8% and loop structure for 50.2%; it predicted that there were 7 O-glycosylation sites in OmpH protein with the amino acid residual sites of 2, 45, 48, 330, 716, 721, 723, respectively, and 2 N-glycosylation sites with the amino acid residual sites of 15 and 35. [Conclusion] This study lays the foundation for the study on the immunity of OmpH gene from yak.展开更多
A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the tem...A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the temperature and stress field of the Cao'e Sluice during the construction period. From the calculated results, we can find that the temperaiure and stress of concrete cooled with plastic pipes are much lower than those of concrete without pipes. Moreover, plastic pipes could not be corroded by seawater. That is to say, a good effect of temperature control and cracking prevention can be achieved, which provides a useful reference for other similar nearshore concrete projects.展开更多
Based on the analysis and comparison of soil temperature, thermal regime and permafrost table under the experimental embankment of crushed rock structures in Beiluhe, results show that crushed rock structures provide ...Based on the analysis and comparison of soil temperature, thermal regime and permafrost table under the experimental embankment of crushed rock structures in Beiluhe, results show that crushed rock structures provide an extensive cooling effect, which produces a rising permafrost table and decreasing soil temperatures. The rise of the permafrost table under the embankment ranges from an increase of 1.08 m to 1.67 m, with an average of 1.27 m from 2004 to 2007. Mean annual soil temperatures under the crushed rock layer embankment decreased significantly from 2005 to 2007, with average decreases of ?1.03 °C at the depth of 0.5 m, ?1.14 °C at the depth of 1.5 m, and ?0.5 °C at the depth of 5 m. During this period, mean annual soil temperatures under the crushed rock cover embankment showed a slight decrease at shallow depths, with an average decrease of ?0.2 °C at the depth of 0.5 m and 1.5 m, but a slight rise at the depth of 5 m. After the crushed rock structures were closed or crammed with sand, the cooling effect of the crushed rock layer embankment was greatly reduced and that of the crushed rock cover embankment was just slightly reduced.展开更多
Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a ...Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically(in x axis),and it is 0.55 horizontally(in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.展开更多
Cooling rate is a key factor that can drastically affect the phase transformation and thermal stress of duplex stainless steels. Therefore, in this research, different sand moulds were used to explore the influence of...Cooling rate is a key factor that can drastically affect the phase transformation and thermal stress of duplex stainless steels. Therefore, in this research, different sand moulds were used to explore the influence of cooling rate on the solidification of the 2304 duplex stainless steel (DSS). The macro and micro structures of the 2304 DSS were investigated. Small equiaxed grains are obtained in chromite sand mould sample with a lower pouring temperature and a higher cooling rate, whereas coarse columnar and equiaxed grains are found in silica sand and refractory powder mould samples. The size of austenite phase is significantly increased with decreasing cooling rate, while the ferrite phase content ranging from 51.6% to 53.9% does not change obviously. In addition, the linear contraction of the 2304 DSS decreases from 2.34% to 1.09% when the mean cooling rate above 1,173 K increases from 0.99 K·s-1 to 3.66 K·s-1.展开更多
An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to captur...An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to capture the shock wave.The numerical results show that with the compression of the wedge wall the detonation wave front structure is divided into three sections:the ZND model-like strcuture,single-sided triple point structure and dual-headed triple point strucuture.The first structure is the smooth straight,and the second has the characteristic of the triple points propagating dowanstream only with the same velocity,while the dual-headed triple point structure is very complicated.The detonation waves facing upstream and downstream propagate with different velocities,in which the periodic collisions of the triple points cause the oscillation of the detonation wave front.This oscillation process has temporal and spatial periodicity.In addition,the triple point trace are recorded to obtain different cell structures in three sections.展开更多
A three-dimensional finite-element model of slab continuous casting mold was conducted to clarify the effect of cooling structure on thermal behavior of copper plates. The results show that temperature distribution of...A three-dimensional finite-element model of slab continuous casting mold was conducted to clarify the effect of cooling structure on thermal behavior of copper plates. The results show that temperature distribution of hot surface is mainly governed by cooling structure and heat-transfer conditions. For hot surface centricity, maximum surface temperature promotions are 30 ℃and 15 ℃ with thickness increments of copper plates of 5 mm and nickel layers of 1 ram, respectively. The surface temperature without nickel layers is depressed by 10 ℃ when the depth increment of water slots is 2 mm and that with nickel layers adjacent to and away from mold outlet is depressed by 7℃ and 5 ℃, respectively. The specific trend of temperature distribution of transverse sections of copper plates is nearly free of cooling structure, but temperature is changed and its law is similar to the corresponding surface temperature.展开更多
The continental margin of Northeast China and its adjacent areas is composed of two tectonic belts. The inner belt is a collage made up of fragments resulting from breakup of an old land with the north part related to...The continental margin of Northeast China and its adjacent areas is composed of two tectonic belts. The inner belt is a collage made up of fragments resulting from breakup of an old land with the north part related to the evolution of the Palaeo-Asian Ocean and the south part to the evolution of the Palaeo - Pacific Ocean. The outer belt is a Mesozoic terrane, which is a melange made up of fragments of the Late Palaeozoic to Early Mesozoic oceanic crust and the Late M esozoic trench accumulations.There existed another ocean-the Palaeo - Pacific Ocean during the period from the closing of the Palaeo-Asian Ocean to the opening of the modern Pacific Ocean or from the Devonian to Jurassic, and the ocean-floor spreading of the Palaeo - Pacific Ocean led to the formation of the above-mentioned tectonic belts. The development of the strike-slip fault system after the Late Jurassic and the formation of an epicontinental volcano -plutonic rock belt in the Late Cretaceous to Early Tertiary are attributed to the interaction between the modern Pacific plate and the Eurasian plate.展开更多
The crystal structure of the title compound, 2-isobutyl-6-(2?4?dichlorophenyl)- imidazo[2,1-b]-1,3,4-thiadiazole (C14H13Cl2N3S, Mr = 326.23), has been synthesized by the treatment of 2-amino-5-isobutyl-1,3,4-thiadiazo...The crystal structure of the title compound, 2-isobutyl-6-(2?4?dichlorophenyl)- imidazo[2,1-b]-1,3,4-thiadiazole (C14H13Cl2N3S, Mr = 326.23), has been synthesized by the treatment of 2-amino-5-isobutyl-1,3,4-thiadiazole with a-chloroaceto-2,4-dichlorophenone and determined by single-crystal X-ray diffraction. The crystal belongs to monoclinic, space group P21/n with a = 12.483(7), b = 8.420(4), c = 14.998(8) ? b = 105.770(10)? V = 1517.0(14) 3, Z = 4, Dc = 1.428 g/cm3, S = 0.902, m(MoKa) = 0.558 mm-1, F (000) = 672, R = 0.0579 and wR = 0.1186. The X-ray analytic results showed that all ring atoms in the imidazothiadiazole moiety are almost coplanar. The dihedral angel between the phenyl group and hetero-cycle is 16.8(0.2)?展开更多
On the basis of the finite element analysis, the elastic wave propagation in cellular structures is investigated using the symplectic algorithm. The variation principle is first applied to obtain the dual variables an...On the basis of the finite element analysis, the elastic wave propagation in cellular structures is investigated using the symplectic algorithm. The variation principle is first applied to obtain the dual variables and the wave propagation problem is then transformed into two-dimensional (2D) symplectic eigenvalue problems, where the extended Wittrick-Williams algorithm is used to ensure that no phase propagation eigenvalues are missed during computation. Three typical cellular structures, square, triangle and hexagon, are introduced to illustrate the unique feature of the symplectic algorithm in higher-frequency calculation, which is due to the conserved properties of the structure-preserving symplectic algorithm. On the basis of the dispersion relations and phase constant surface analysis, the band structure is shown to be insensitive to the material type at lower frequencies, however, much more related at higher frequencies. This paper also demonstrates how the boundary conditions adopted in the finite element modeling process and the structures' configurations affect the band structures. The hexagonal cells are demonstrated to be more efficient for sound insulation at higher frequencies, while the triangular cells are preferred at lower frequencies. No complete band gaps are observed for the square cells with fixed-end boundary conditions. The analysis of phase constant surfaces guides the design of 2D cellular structures where waves at certain frequencies do not propagate in specified directions. The findings from the present study will provide invaluable guidelines for the future application of cellular structures in sound insulation.展开更多
A new coordination compound Zn(2,4'-bpt)2(H2O)(1) based on the versatile ligand 2,4'-Hbpt(2,4?-Hbpt = 3-(2-pyridyl)-5-(4-pyridyl)-1H-1,2,4-triazole) was prepared by hydrothermal reactions. The structure...A new coordination compound Zn(2,4'-bpt)2(H2O)(1) based on the versatile ligand 2,4'-Hbpt(2,4?-Hbpt = 3-(2-pyridyl)-5-(4-pyridyl)-1H-1,2,4-triazole) was prepared by hydrothermal reactions. The structure of complex 1 has been characterized by X-ray single-crystal diffraction, elemental analysis, X-ray powder diffraction, IR spectrum analysis and thermogravimetric analysis. Single-crystal X-ray diffraction analysis indicates that the complex belongs to monoclinic system, space group C2/c with a = 23.877(3), b = 0.7483(9), c = 1.2492(2) A, b = 92.681(2)°, V = 2230.6(4) A^3, Z = 4, Dc = 1.572 g/cm^3, m = 1.143 mm^-1, Mr = 527.85 and F(000) = 1080. The final R = 0.0581 and wR = 0.0898 with I 〉 2s(I). 1 is a 0D motif which is connected by hydrogen bonds to form a corrugated 1D pattern. In addition, 1 shows strong photoluminescent emissions in the solid state at room temperature which can be used as potential optical materials. Theoretical calculations based on density functional theory(DFT) were employed in order to explicate the stability and chemical reactivity of 2,4'-Hbpt with different conformations. The results indicated that conformation I is more stable and prior to coordination in the reactions.展开更多
This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2...This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake.Vertical offset and horizontal displacement at the trench site were 2.8 m(NW side up)and 4.8 m(right-lateral),respectively.The fault zone formed in Triassic sandstone,siltstone,and shale about 500 m away from the Yingxiu-Beichuan fault,a major fault in the Longmenshan fault system.A trench survey across the coseismic fault,and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about0.5 and 250-300 m in widths,respectively,and that the fault strikes N62°E and dips 68° to NW.Quaternary conglomerates were recovered beneath the fault in the drilling,so that the fault moved at least 55 m along the coseismic slip zone,experiencing about 18 events of similar sizes.The fault core is composed of grayish gouge(GG) and blackish gouge(BG) with very complex slip-zone structures.BG contains low-crystalline graphite of about 30 %.High-velocity friction experiments were conducted at normal stresses of 0.6-2.1 MPa and slip rates of 0.1-2.1 m/s.Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient lpto steadystate friction coefficient lssover a slip-weakening distance Dc.Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces,respectively.Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.展开更多
An ultra-thin flattened heat pipe has been developed with a centered wick structure.This structure is essential to make the heat pipe thinner.However,the centered wick structure reduces the evaporation and condensatio...An ultra-thin flattened heat pipe has been developed with a centered wick structure.This structure is essential to make the heat pipe thinner.However,the centered wick structure reduces the evaporation and condensation surface areas of the wick structure because it is sandwiched between heat pipe walls.In this study,because detailed discussion has not been made,heat transfer experiments were conducted for the wick structure sandwiched between two solid walls.This study focused on the evaporation heat transfer characteristics from the sandwiched wick structure.The experiments were conducted with three wick structures,that is,strip-shaped sintered copper powders with thicknesses of 0.5,1.0,and 1.5 mm.Water was used as working fluid.The capillary pumping performance,that is,the liquid lifting velocities of the three wick structures were the same.The experimental results of the three wick structures were compared regarding the relation between the evaporation heat transfer rate and the superheat of the working fluid.The heat transfer experiments were also conducted when one of the solid walls was removed from the wick structure.It was confirmed that even if the wick structure was sandwiched between the solid walls,sufficient evaporation of the working fluid occurred from the thin sides of the wick structure.展开更多
文摘The design of three-dimensional printing based conformal cooling channels(CCCs)in injection molding holds great significance.Compared to CCCs,conformal cooling(CC)cavity solutions show promise in delivering enhanced cooling performance for plastic products,although they have been underexplored.In this research,CC cavity is designed within the mold geometry,reinforced by body-centered cubic(BCC)lattice structures to enhance mechanical strength.Three distinct BCC lattice variations have been integrated into the CC cavity:the BCC structure,BCC with cubes,and BCC with pillars.The thermal performances of the BCC lattice-added CC cavity are assessed numerically after experimental validation.To provide feasible solutions from viewpoints of thermal performances,various BCC lattice structure thicknesses are analyzed in the range of 0.8–1.2mm.Thermal simulation outcomes reveal that thicker lattice structures enhance mechanical strength but simultaneously lead to an increase in cooling time.Upon examining all the proposed CC cavity solutions supported by BCC,the cooling times range from 2.2 to 4 s,resulting in a reduction of 38.6%to 66.1%when compared to conventional straightdrilled channels.In contrast to CCCs,CC cavities have the potential to decrease the maximum temperature nonuniformity from 8.5 to 6 K.Nevertheless,the presence of lattice structures in CC cavity solutions results in an elevated pressure drop,reaching 2.8MPa,whereas the results for CCCs remain below2.1MPa.
基金supported by National Basic Research Program of China(973 Program)(No.2013GB102000)
文摘An orthogoual experimental scheme was designed for optimizing a water-cooled structure of the divertor plate. There were three influencing factors: the radius R of the water- cooled pipe, and the pipe spacing L1 and L3. The influence rule of different factors on the cooling effect and thermal stress of the plate were studied, for which the influence rank was respectively R 〉 L1 〉 L3 and L3 〉 R 〉 L1. The highest temperature value decreased when R and L1 increased~ and the maximum thermal stress value dropped when R, L1 and L3 increased. The final optimized results can be summarized as: R equals 6 mm or 7 mm, L1 equals 19 mm, and L3 equals 20 mm. Compared with the initial design, the highest temperature value had a small decline~ and the maximum thermal stress value dropped by 19~ to 24~. So it was not ideal to improve the cooling effect by optimizing the geometry sizes of the water-cooled structure, even worse than increasing the flow speed, but it was very effective for dropping the maximum thermal stress value. The orthogoaal experimental method reduces the number of experiments by 80%, and thus it is feasible and effective to optimize the water-cooled structure of the divertor plate with the orthogonal theory.
基金Project supported by the National Basic Research Program of China (Grant No. 2009 CB724100)the National Natural Science Foundation of China (Grant No. 11172326)
文摘In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions.
文摘The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti- 43Al-9V-O. 3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, the partial γ + α2 twophase lamellar structure and granular γm phase. And the lanthanon Y existed as YAl2 phase and served as grain refined. The impact of different cooling rates on joint microstructure, fracture characteristic and tensile strength were investigated. The high cooling rate restrained the structural transformation and resulted in the ordering structure. The fracture of the joint was brittle cleavage fracture because the ordering structure went against restraining the crack propagation. With the decrease of cooling rate, the transformation amounts of lamellar structure increased, and the fracture presented the layered and crosslayered characteristic.
文摘The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the cooling rate is closely related to the structure and properties, and for the cast iron, the best comprehensive mechanical properties were obtained by forced air cooling with a cooling rate as about 7 ℃/s. The reason and regularity for the change of mechanical properties were analyzed.
文摘Aim: To study the strength and microstructure of trace-Ti-bearing stracture steel. Materials and Methods: The strength and microstructure of the trace Ti bearing structure steel were studied by two kinds of controlled cooling simulation testing results in the first stage cooling and the last stage cooling after hot press deformation in the traceTi-bearing structure steel. Results: It showed that the ferrite grain size, the relative contribution of the involved strength and the mechanical strength were influenced more or less by different cooling rates. Both the refinement of ferrite grain and the increase of mechanical strength could be obtained by the proper decrease of water cooling interruption temperature (WTI) and coiling temperature (CT) in the first stage cooling or the proper increase of water cooling beginning temperature (WTB) and proper decrease of coiling temperature (CT) in the last stage cooling. Conclusion: The strength, the ferrite grain refinement and the yield tensile ratio in the first stage cooling process are much better than those in the last stage cooling process.
基金Supported by the Project for High-level Talents of Qinghai University (2008-QGC-7)~~
文摘[Objective] This study aimed to predict the structure of protein OmpH from Pasteurella multocida C47-8 (PmC47-8) strain of yak. [Method] Online BLAST, signal peptide prediction, secondary structure prediction and protein characteristics of sequencing result of gene OmpH from PmC47-8 strain were analyzed. [Result] The similarities of gene OmpH from PmC47-8 with the published 81 OmpH genes were between 84% and 99%; a signal peptide was found with the cleavage sites between 20 and 21 in the polypeptide; secondary structure prediction showed that folding structure accounted for 49.8% and loop structure for 50.2%; it predicted that there were 7 O-glycosylation sites in OmpH protein with the amino acid residual sites of 2, 45, 48, 330, 716, 721, 723, respectively, and 2 N-glycosylation sites with the amino acid residual sites of 15 and 35. [Conclusion] This study lays the foundation for the study on the immunity of OmpH gene from yak.
基金supported by the National Natural Science Foundation of China (Grant No. 50779010)
文摘A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the temperature and stress field of the Cao'e Sluice during the construction period. From the calculated results, we can find that the temperaiure and stress of concrete cooled with plastic pipes are much lower than those of concrete without pipes. Moreover, plastic pipes could not be corroded by seawater. That is to say, a good effect of temperature control and cracking prevention can be achieved, which provides a useful reference for other similar nearshore concrete projects.
基金supported by The Outstanding Youth Foundation Project, National Natural Science Foundation of China (Grant No. 40625004) the grant of the Western Project Program of the Chinese Academy of Sciences (No. KZCX2-XB2-10)
文摘Based on the analysis and comparison of soil temperature, thermal regime and permafrost table under the experimental embankment of crushed rock structures in Beiluhe, results show that crushed rock structures provide an extensive cooling effect, which produces a rising permafrost table and decreasing soil temperatures. The rise of the permafrost table under the embankment ranges from an increase of 1.08 m to 1.67 m, with an average of 1.27 m from 2004 to 2007. Mean annual soil temperatures under the crushed rock layer embankment decreased significantly from 2005 to 2007, with average decreases of ?1.03 °C at the depth of 0.5 m, ?1.14 °C at the depth of 1.5 m, and ?0.5 °C at the depth of 5 m. During this period, mean annual soil temperatures under the crushed rock cover embankment showed a slight decrease at shallow depths, with an average decrease of ?0.2 °C at the depth of 0.5 m and 1.5 m, but a slight rise at the depth of 5 m. After the crushed rock structures were closed or crammed with sand, the cooling effect of the crushed rock layer embankment was greatly reduced and that of the crushed rock cover embankment was just slightly reduced.
基金Project supported by the Shanghai Nanoscience Foundation,China (Grant Nos. 0852nm07000 and 0952nm07000)the National Natural Science Foundation of China (Grant Nos. 10804084 and 91123022)+1 种基金the National Key Technology R & D Program,China (Grant No. 2006BAF06B08)the Specialized Research Fund for the Doctoral Program of Ministry of High Education of China (Grant No. 200802471008)
文摘Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically(in x axis),and it is 0.55 horizontally(in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.
基金supported by the National Natural Science Foundation of China (Grant No. 50904044)
文摘Cooling rate is a key factor that can drastically affect the phase transformation and thermal stress of duplex stainless steels. Therefore, in this research, different sand moulds were used to explore the influence of cooling rate on the solidification of the 2304 duplex stainless steel (DSS). The macro and micro structures of the 2304 DSS were investigated. Small equiaxed grains are obtained in chromite sand mould sample with a lower pouring temperature and a higher cooling rate, whereas coarse columnar and equiaxed grains are found in silica sand and refractory powder mould samples. The size of austenite phase is significantly increased with decreasing cooling rate, while the ferrite phase content ranging from 51.6% to 53.9% does not change obviously. In addition, the linear contraction of the 2304 DSS decreases from 2.34% to 1.09% when the mean cooling rate above 1,173 K increases from 0.99 K·s-1 to 3.66 K·s-1.
基金supported by the National Natural Science Foundation of China (10872096)the Open Fund of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (KFJJ09-13)
文摘An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to capture the shock wave.The numerical results show that with the compression of the wedge wall the detonation wave front structure is divided into three sections:the ZND model-like strcuture,single-sided triple point structure and dual-headed triple point strucuture.The first structure is the smooth straight,and the second has the characteristic of the triple points propagating dowanstream only with the same velocity,while the dual-headed triple point structure is very complicated.The detonation waves facing upstream and downstream propagate with different velocities,in which the periodic collisions of the triple points cause the oscillation of the detonation wave front.This oscillation process has temporal and spatial periodicity.In addition,the triple point trace are recorded to obtain different cell structures in three sections.
基金Project(51004031) supported by the National Natural Science Foundation of ChinaProject(50925415) supported by the National Outstanding Young Scientist Foundation of China+1 种基金Project(20100042120012) supported by the Special Research Fund for Doctoral Programs of Ministry of Education of ChinaProject(N090402022) supported by the Fundamental Research Funds for the Central Universities of China
文摘A three-dimensional finite-element model of slab continuous casting mold was conducted to clarify the effect of cooling structure on thermal behavior of copper plates. The results show that temperature distribution of hot surface is mainly governed by cooling structure and heat-transfer conditions. For hot surface centricity, maximum surface temperature promotions are 30 ℃and 15 ℃ with thickness increments of copper plates of 5 mm and nickel layers of 1 ram, respectively. The surface temperature without nickel layers is depressed by 10 ℃ when the depth increment of water slots is 2 mm and that with nickel layers adjacent to and away from mold outlet is depressed by 7℃ and 5 ℃, respectively. The specific trend of temperature distribution of transverse sections of copper plates is nearly free of cooling structure, but temperature is changed and its law is similar to the corresponding surface temperature.
基金A Project supported by the National Natural Science Foundation of China (Nos.9487001,49173131)
文摘The continental margin of Northeast China and its adjacent areas is composed of two tectonic belts. The inner belt is a collage made up of fragments resulting from breakup of an old land with the north part related to the evolution of the Palaeo-Asian Ocean and the south part to the evolution of the Palaeo - Pacific Ocean. The outer belt is a Mesozoic terrane, which is a melange made up of fragments of the Late Palaeozoic to Early Mesozoic oceanic crust and the Late M esozoic trench accumulations.There existed another ocean-the Palaeo - Pacific Ocean during the period from the closing of the Palaeo-Asian Ocean to the opening of the modern Pacific Ocean or from the Devonian to Jurassic, and the ocean-floor spreading of the Palaeo - Pacific Ocean led to the formation of the above-mentioned tectonic belts. The development of the strike-slip fault system after the Late Jurassic and the formation of an epicontinental volcano -plutonic rock belt in the Late Cretaceous to Early Tertiary are attributed to the interaction between the modern Pacific plate and the Eurasian plate.
基金The project was supported by NNSFC (20172031 29832050) the NSF of shandong province (Y2003B01) and the Fund for the Doctoral Program of Higher Education
文摘The crystal structure of the title compound, 2-isobutyl-6-(2?4?dichlorophenyl)- imidazo[2,1-b]-1,3,4-thiadiazole (C14H13Cl2N3S, Mr = 326.23), has been synthesized by the treatment of 2-amino-5-isobutyl-1,3,4-thiadiazole with a-chloroaceto-2,4-dichlorophenone and determined by single-crystal X-ray diffraction. The crystal belongs to monoclinic, space group P21/n with a = 12.483(7), b = 8.420(4), c = 14.998(8) ? b = 105.770(10)? V = 1517.0(14) 3, Z = 4, Dc = 1.428 g/cm3, S = 0.902, m(MoKa) = 0.558 mm-1, F (000) = 672, R = 0.0579 and wR = 0.1186. The X-ray analytic results showed that all ring atoms in the imidazothiadiazole moiety are almost coplanar. The dihedral angel between the phenyl group and hetero-cycle is 16.8(0.2)?
基金supported by the National Natural Science Foundation of China (10972182, 10772147, 10632030)the National Basic Research Program of China (2006CB 601202)+3 种基金the Doctorate Foundation of Northwestern Polytechnical University (CX200908)the Graduate Starting Seed Fund of Northwestern Polytechnical University (Z200930)the NPU Foundation for Fundamental Researchthe Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment (GZ0802)
文摘On the basis of the finite element analysis, the elastic wave propagation in cellular structures is investigated using the symplectic algorithm. The variation principle is first applied to obtain the dual variables and the wave propagation problem is then transformed into two-dimensional (2D) symplectic eigenvalue problems, where the extended Wittrick-Williams algorithm is used to ensure that no phase propagation eigenvalues are missed during computation. Three typical cellular structures, square, triangle and hexagon, are introduced to illustrate the unique feature of the symplectic algorithm in higher-frequency calculation, which is due to the conserved properties of the structure-preserving symplectic algorithm. On the basis of the dispersion relations and phase constant surface analysis, the band structure is shown to be insensitive to the material type at lower frequencies, however, much more related at higher frequencies. This paper also demonstrates how the boundary conditions adopted in the finite element modeling process and the structures' configurations affect the band structures. The hexagonal cells are demonstrated to be more efficient for sound insulation at higher frequencies, while the triangular cells are preferred at lower frequencies. No complete band gaps are observed for the square cells with fixed-end boundary conditions. The analysis of phase constant surfaces guides the design of 2D cellular structures where waves at certain frequencies do not propagate in specified directions. The findings from the present study will provide invaluable guidelines for the future application of cellular structures in sound insulation.
基金Supported by the National Natural Science Foundation of China(Nos.21263019 and 51364038)
文摘A new coordination compound Zn(2,4'-bpt)2(H2O)(1) based on the versatile ligand 2,4'-Hbpt(2,4?-Hbpt = 3-(2-pyridyl)-5-(4-pyridyl)-1H-1,2,4-triazole) was prepared by hydrothermal reactions. The structure of complex 1 has been characterized by X-ray single-crystal diffraction, elemental analysis, X-ray powder diffraction, IR spectrum analysis and thermogravimetric analysis. Single-crystal X-ray diffraction analysis indicates that the complex belongs to monoclinic system, space group C2/c with a = 23.877(3), b = 0.7483(9), c = 1.2492(2) A, b = 92.681(2)°, V = 2230.6(4) A^3, Z = 4, Dc = 1.572 g/cm^3, m = 1.143 mm^-1, Mr = 527.85 and F(000) = 1080. The final R = 0.0581 and wR = 0.0898 with I 〉 2s(I). 1 is a 0D motif which is connected by hydrogen bonds to form a corrugated 1D pattern. In addition, 1 shows strong photoluminescent emissions in the solid state at room temperature which can be used as potential optical materials. Theoretical calculations based on density functional theory(DFT) were employed in order to explicate the stability and chemical reactivity of 2,4'-Hbpt with different conformations. The results indicated that conformation I is more stable and prior to coordination in the reactions.
基金supported by State Key Laboratory of Earthquake Dynamics (project No.LED2010A03)Wenchuan Earthquake Fault Scientific Drilling Project (WFSD-09)
文摘This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake.Vertical offset and horizontal displacement at the trench site were 2.8 m(NW side up)and 4.8 m(right-lateral),respectively.The fault zone formed in Triassic sandstone,siltstone,and shale about 500 m away from the Yingxiu-Beichuan fault,a major fault in the Longmenshan fault system.A trench survey across the coseismic fault,and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about0.5 and 250-300 m in widths,respectively,and that the fault strikes N62°E and dips 68° to NW.Quaternary conglomerates were recovered beneath the fault in the drilling,so that the fault moved at least 55 m along the coseismic slip zone,experiencing about 18 events of similar sizes.The fault core is composed of grayish gouge(GG) and blackish gouge(BG) with very complex slip-zone structures.BG contains low-crystalline graphite of about 30 %.High-velocity friction experiments were conducted at normal stresses of 0.6-2.1 MPa and slip rates of 0.1-2.1 m/s.Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient lpto steadystate friction coefficient lssover a slip-weakening distance Dc.Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces,respectively.Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.
文摘An ultra-thin flattened heat pipe has been developed with a centered wick structure.This structure is essential to make the heat pipe thinner.However,the centered wick structure reduces the evaporation and condensation surface areas of the wick structure because it is sandwiched between heat pipe walls.In this study,because detailed discussion has not been made,heat transfer experiments were conducted for the wick structure sandwiched between two solid walls.This study focused on the evaporation heat transfer characteristics from the sandwiched wick structure.The experiments were conducted with three wick structures,that is,strip-shaped sintered copper powders with thicknesses of 0.5,1.0,and 1.5 mm.Water was used as working fluid.The capillary pumping performance,that is,the liquid lifting velocities of the three wick structures were the same.The experimental results of the three wick structures were compared regarding the relation between the evaporation heat transfer rate and the superheat of the working fluid.The heat transfer experiments were also conducted when one of the solid walls was removed from the wick structure.It was confirmed that even if the wick structure was sandwiched between the solid walls,sufficient evaporation of the working fluid occurred from the thin sides of the wick structure.