In the present paper we investigate linear elastic systems with damping in Hilbert spaces, where A and B ars unbounded positive definite linear operators. We have obtained the most fundamental results for the holomorp...In the present paper we investigate linear elastic systems with damping in Hilbert spaces, where A and B ars unbounded positive definite linear operators. We have obtained the most fundamental results for the holomorphic property and exponential stability of the semigroups associated with these systems via inclusion relation of the domains of A and B.展开更多
An analytical model of hydraulic damper was presented in forward flight accounting for pitch/flap/lag kinematic coupling and its nonlinear force-velocity curve. The fourth order Runge-Kutta was applied to calculate th...An analytical model of hydraulic damper was presented in forward flight accounting for pitch/flap/lag kinematic coupling and its nonlinear force-velocity curve. The fourth order Runge-Kutta was applied to calculate the damper axial velocity in time domain. Fourier series based moving block analysis was applied to calculate equivalent linear damping in terms of transient responses of damper axial velocity. Results indicate that equivalent linear damping will be significantly reduced if pitch/flap/lag kinematic coupling introduced for notional model and flight conditions.展开更多
Damping is critical for the roll motion response of a ship in waves. A common method for the assessment of damping in a ship’s rolling motion is to perform a free-decay experiment in calm water. In this paper, we pro...Damping is critical for the roll motion response of a ship in waves. A common method for the assessment of damping in a ship’s rolling motion is to perform a free-decay experiment in calm water. In this paper, we propose an approach for estimating nonlinear damping that involves a linear exponential analytical approximation of the experimental roll free-decay amplitudes, fol- lowed by parametric identification based on the asymptotic method. The restoring moment can be strongly nonlinear. To validate this method, we first analyzed numerically simulated roll free-decay data using rolling equations with two alternative parametric forms: linear-plus-quadratic and linear-plus-cubic damping. By doing so, we obtained accurate estimates of nonlinear damping coefficients, even for large initial roll amplitudes. Then, we applied the proposed method to real free-decay data obtained from a scale model of a bulk barrier, and found the simulated results to be in good agreement with the experimental data. Using only free-decay peak data, the proposed method can be used to estimate nonlinear roll-damping coefficients for conditions with a strongly nonlinear restoring moment and large initial roll amplitudes.展开更多
The pullback attractors for the 2D nonautonomous g-Navier-Stokes equations with linear dampness axe investigated on some unbounded domains. The existence of the pullback attractors is proved by verifying the existence...The pullback attractors for the 2D nonautonomous g-Navier-Stokes equations with linear dampness axe investigated on some unbounded domains. The existence of the pullback attractors is proved by verifying the existence of pullback D-absorbing sets with cocycle and obtaining the pullback :D-asymptotic compactness. Furthermore, the estimation of the fractal dimensions for the 2D g-Navier-Stokes equations is given.展开更多
Introducing the nonlinear Rayleigh damping into the governing equation of the Mode Ⅲ dynamic rupture for standard viscoelastic solid, this equation is a partial differential and integral equation. First, eliminating ...Introducing the nonlinear Rayleigh damping into the governing equation of the Mode Ⅲ dynamic rupture for standard viscoelastic solid, this equation is a partial differential and integral equation. First, eliminating the integral term, a PDE of third_order is obtained. Then, applying the small parameter expansion method, linearized asymptotic governing equation for each order of the small parameter is obtained. Dividing the third_order PDE into an elastic part with known solution, the rest part pertains to viscous effect which is neither a Mathieu equation nor a Hill one. The WKBJ method is still adopted to solve it analytically.展开更多
The existence of global BV solutions for the Aw-Rascle system with linear damping is considered.In order to get approximate solutions we consider the system in Lagrangian coordinates,then by using the wave front track...The existence of global BV solutions for the Aw-Rascle system with linear damping is considered.In order to get approximate solutions we consider the system in Lagrangian coordinates,then by using the wave front tracking method coupling with and suitable splitting algorithm and the ideas of[1]we get a sequence of approximate solutions.Finally we show the convergence of this approximate sequence to the weak entropic solution.展开更多
This paper studies the long time behavior of solutions to the Navier-Stokes equations with linear damping on R^2. The authors prove the existence of L^2-global attractor and Hi-global attractor by showing that the cor...This paper studies the long time behavior of solutions to the Navier-Stokes equations with linear damping on R^2. The authors prove the existence of L^2-global attractor and Hi-global attractor by showing that the corresponding semigroup is asymptotically compact. Thereafter, they establish that the two attractors are the same and thus reveal the asymptotic smoothing effect of the solutions.展开更多
In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for i...In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for implementing the proposed equivalent damping ratio model for use in seismic damage evaluation is presented.To this end,Ibarra’s peak-oriented model,which incorporates an energy-based degradation rule,is selected for representing hysteretic behavior of RC structure,and the optimized equivalent damping for predicting the maximum displacement response is presented by using the empirical method,in which the effect of cyclic degradation is considered.Moreover,the relationship between the hysteretic energy dissipation of the inelastic system and the elastic strain energy of the equivalent linear system is established so that the proposed equivalent linear system can be directly integrated with the Park-Ang seismic model to implement seismic damage evaluation.Due to the simplicity of the equivalent linearization method,the proposed method provides an efficient and reliable way of obtaining comprehensive insight into the seismic performance of RC structures.The verification demonstrates the validity of the proposed method.展开更多
The experiments reveal the characteristics of stable damping in a multiphasic Al-Zn eutectoid alloy:(1)Thewhole damping(Q<sup>-1</sup>)has the same dependence on measured frequency(f),i.e.Q<sup>-...The experiments reveal the characteristics of stable damping in a multiphasic Al-Zn eutectoid alloy:(1)Thewhole damping(Q<sup>-1</sup>)has the same dependence on measured frequency(f),i.e.Q<sup>-1</sup>ocf<sup>-n</sup>,where n is a parameterand is independent of temperature.(2)In a low-temperature(low-T)and low-strain-amplitude(low-A<sub>)</sub>region,Q<sup>-1</sup>=(B/)exp(-nH/kT),where B is a parameter,H the atomic diffusion activation energy,k Boltzmann′sconstant,and T the absolute temperature.n,H<sub>o</sub>(=nH)and H are all independent of A<sub>.</sub>The damping comesfrom an anelastic motion of the phase-interface.(3)In an intermediate region including a low-Tand a high-A<sub>,</sub>a middle-T and middle A<sub> </sub>and a high-T and low-A<sub> </sub>regions,the equation Q<sup>-1</sup>=(C/f<sup>n</sup>)exp(nH/kT)stillholds,but the damping has a normal amplitude effect C,n,and H all vary with A<sub>;</sub>the damping results from anonlinear relaxation of phase-interface.(4)In a high-T and high-A<sub> </sub>region,there is no longer a linear relationship between InQ<sup>-1</sup> and T<sup>-1</sup>,whereas the relation Q<sup>-1</sup>f<sup>-n</sup> is still satisfied,where n increases as A<sub> </sub>increases,andthe damping has a normal amplitude effect but one which is weaker than that in the case(3).The damping maybe attributed to another kind of nonlinear relaxation between phase-interfaces.展开更多
Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l...Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications.展开更多
In this paper,the oscillation for a class of second-order half-linear neutral damped differential equation with time-delay is studied.By means of Yang-inequality,the generalized Riccati transformation and a certain fu...In this paper,the oscillation for a class of second-order half-linear neutral damped differential equation with time-delay is studied.By means of Yang-inequality,the generalized Riccati transformation and a certain function,some new sufficient conditions for the oscillation are given for all solutions to the equation.展开更多
文摘In the present paper we investigate linear elastic systems with damping in Hilbert spaces, where A and B ars unbounded positive definite linear operators. We have obtained the most fundamental results for the holomorphic property and exponential stability of the semigroups associated with these systems via inclusion relation of the domains of A and B.
文摘An analytical model of hydraulic damper was presented in forward flight accounting for pitch/flap/lag kinematic coupling and its nonlinear force-velocity curve. The fourth order Runge-Kutta was applied to calculate the damper axial velocity in time domain. Fourier series based moving block analysis was applied to calculate equivalent linear damping in terms of transient responses of damper axial velocity. Results indicate that equivalent linear damping will be significantly reduced if pitch/flap/lag kinematic coupling introduced for notional model and flight conditions.
基金support from the National Natural Science Foundation of China (No. 5160 9224)the Major Program of National Natural Science Foundation of China (No. 51490675)the Fundamental Research Funds for the Central Universities (No. 201513056)
文摘Damping is critical for the roll motion response of a ship in waves. A common method for the assessment of damping in a ship’s rolling motion is to perform a free-decay experiment in calm water. In this paper, we propose an approach for estimating nonlinear damping that involves a linear exponential analytical approximation of the experimental roll free-decay amplitudes, fol- lowed by parametric identification based on the asymptotic method. The restoring moment can be strongly nonlinear. To validate this method, we first analyzed numerically simulated roll free-decay data using rolling equations with two alternative parametric forms: linear-plus-quadratic and linear-plus-cubic damping. By doing so, we obtained accurate estimates of nonlinear damping coefficients, even for large initial roll amplitudes. Then, we applied the proposed method to real free-decay data obtained from a scale model of a bulk barrier, and found the simulated results to be in good agreement with the experimental data. Using only free-decay peak data, the proposed method can be used to estimate nonlinear roll-damping coefficients for conditions with a strongly nonlinear restoring moment and large initial roll amplitudes.
基金supported by the National Natural Science Foundation of China (No.10871156)the Fund of Xi'an Jiaotong University (No.2009xjtujc30)
文摘The pullback attractors for the 2D nonautonomous g-Navier-Stokes equations with linear dampness axe investigated on some unbounded domains. The existence of the pullback attractors is proved by verifying the existence of pullback D-absorbing sets with cocycle and obtaining the pullback :D-asymptotic compactness. Furthermore, the estimation of the fractal dimensions for the 2D g-Navier-Stokes equations is given.
文摘Introducing the nonlinear Rayleigh damping into the governing equation of the Mode Ⅲ dynamic rupture for standard viscoelastic solid, this equation is a partial differential and integral equation. First, eliminating the integral term, a PDE of third_order is obtained. Then, applying the small parameter expansion method, linearized asymptotic governing equation for each order of the small parameter is obtained. Dividing the third_order PDE into an elastic part with known solution, the rest part pertains to viscous effect which is neither a Mathieu equation nor a Hill one. The WKBJ method is still adopted to solve it analytically.
文摘The existence of global BV solutions for the Aw-Rascle system with linear damping is considered.In order to get approximate solutions we consider the system in Lagrangian coordinates,then by using the wave front tracking method coupling with and suitable splitting algorithm and the ideas of[1]we get a sequence of approximate solutions.Finally we show the convergence of this approximate sequence to the weak entropic solution.
基金Supported by Natural Science Foundation of China(1077107410771139)+1 种基金Supported by the NSF of Wenzhou University(2007L024)Supported by the NSF of Zhejiang Province(Y6080077)
文摘This paper studies the long time behavior of solutions to the Navier-Stokes equations with linear damping on R^2. The authors prove the existence of L^2-global attractor and Hi-global attractor by showing that the corresponding semigroup is asymptotically compact. Thereafter, they establish that the two attractors are the same and thus reveal the asymptotic smoothing effect of the solutions.
基金National Natural Science Foundation of China under Grant No.51978125Open Fund Project of Research Center for Geotechnical and Structural Engineering Technology of Liaoning Province under Grant No.DLSZD2023[007]。
文摘In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for implementing the proposed equivalent damping ratio model for use in seismic damage evaluation is presented.To this end,Ibarra’s peak-oriented model,which incorporates an energy-based degradation rule,is selected for representing hysteretic behavior of RC structure,and the optimized equivalent damping for predicting the maximum displacement response is presented by using the empirical method,in which the effect of cyclic degradation is considered.Moreover,the relationship between the hysteretic energy dissipation of the inelastic system and the elastic strain energy of the equivalent linear system is established so that the proposed equivalent linear system can be directly integrated with the Park-Ang seismic model to implement seismic damage evaluation.Due to the simplicity of the equivalent linearization method,the proposed method provides an efficient and reliable way of obtaining comprehensive insight into the seismic performance of RC structures.The verification demonstrates the validity of the proposed method.
文摘The experiments reveal the characteristics of stable damping in a multiphasic Al-Zn eutectoid alloy:(1)Thewhole damping(Q<sup>-1</sup>)has the same dependence on measured frequency(f),i.e.Q<sup>-1</sup>ocf<sup>-n</sup>,where n is a parameterand is independent of temperature.(2)In a low-temperature(low-T)and low-strain-amplitude(low-A<sub>)</sub>region,Q<sup>-1</sup>=(B/)exp(-nH/kT),where B is a parameter,H the atomic diffusion activation energy,k Boltzmann′sconstant,and T the absolute temperature.n,H<sub>o</sub>(=nH)and H are all independent of A<sub>.</sub>The damping comesfrom an anelastic motion of the phase-interface.(3)In an intermediate region including a low-Tand a high-A<sub>,</sub>a middle-T and middle A<sub> </sub>and a high-T and low-A<sub> </sub>regions,the equation Q<sup>-1</sup>=(C/f<sup>n</sup>)exp(nH/kT)stillholds,but the damping has a normal amplitude effect C,n,and H all vary with A<sub>;</sub>the damping results from anonlinear relaxation of phase-interface.(4)In a high-T and high-A<sub> </sub>region,there is no longer a linear relationship between InQ<sup>-1</sup> and T<sup>-1</sup>,whereas the relation Q<sup>-1</sup>f<sup>-n</sup> is still satisfied,where n increases as A<sub> </sub>increases,andthe damping has a normal amplitude effect but one which is weaker than that in the case(3).The damping maybe attributed to another kind of nonlinear relaxation between phase-interfaces.
基金the financial support provided by the National Key Research and Development Program for Young Scientists(No.2021YFC2900400)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(No.GZB20230914)+2 种基金National Natural Science Foundation of China(No.52304123)China Postdoctoral Science Foundation(No.2023M730412)Chongqing Outstanding Youth Science Foundation Program(No.CSTB2023NSCQ-JQX0027).
文摘Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications.
基金partially supported by the construct program of the key disciplin in Hunan Province(No.070105)
文摘In this paper,the oscillation for a class of second-order half-linear neutral damped differential equation with time-delay is studied.By means of Yang-inequality,the generalized Riccati transformation and a certain function,some new sufficient conditions for the oscillation are given for all solutions to the equation.