In situ inflow and outflow permeability tests with the BAT probe at SarapuíII soft clay test site are presented.A description of the BAT permeability test is provided,discussing its advantages and shortcomings,es...In situ inflow and outflow permeability tests with the BAT probe at SarapuíII soft clay test site are presented.A description of the BAT permeability test is provided,discussing its advantages and shortcomings,especially in the case of very soft clays under low stresses.Pore pressures were monitored during probe installation and were found to be slightly lower than piezocone u2 pore pressures,consistent with the position of the filter.The role of filter tip saturation was investigated after the usual saturation procedure provided an unsatisfactory pore pressure response during probe installation.Results show that the vacuum saturation procedure provides adequate response during installation and increases the reliability of the coefficient of permeability determination in early measurements.Both inflow and outflow tests yielded similar results,indicating that careful execution of the test can lead to good test repeatability regardless of the loading condition.Various sequences of alternated inflow and outflow tests have yielded similar results,indicating that soil reconsolidation and filter clogging were negligible in the tests performed.Data are presented concerning the relationship between index parameters and the in situ coefficient of permeability for SarapuíII clay,which plot outside the range of existing databases.展开更多
The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the develop...The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the development of four soft computing models:YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJCSA-MLPnet.First of all,the Yeo-Johnson(YJ)transformation technique was used to stabilize the variance of data and make it more suitable for parametric statistical models that assume normality and equal variances.This technique is expected to improve the accuracy of friction angle prediction models.The friction angle prediction models then utilized multi-layer perceptron neural networks(MLPnet)and metaheuristic optimization algorithms to further enhance performance,including flower pollination algorithm(FPA),coral reefs optimization(CRO),ant colony optimization continuous(ACOC),and cuckoo search algorithm(CSA).The prediction models without the YJ technique,i.e.FPA-MLPnet,CRO-MLPnet,ACOC-MLPnet,and CSA-MLPnet,were then compared to those with the YJ technique,i.e.YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJ-CSA-MLPnet.Among these,the YJ-CRO-MLPnet model demonstrated superior reliability,achieving an accuracy of up to 83%in predicting the friction angle of clay in practical engineering scenarios.This improvement is significant,as it represents an increase from 1.3%to approximately 20%compared to the models that did not utilize the YJ transformation technique.展开更多
This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations...This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations were prepared artificially and stabilized by ordinary Portland cement with various contents. A series of UCS tests of cement stabilized clay specimen after 28 d curing were carried out. The results indicate that the increase of salt concentration results in the decrease in the UCS of cement-treated soil. The negative effect of salt concentration on the strength of cement stabilized clay directly relates to the cement content and salt concentration. The porosity-salt concentration/cement content ratio is a fundamental parameter for assessing the UCS of cement-treated salt-rich clay. An empirical prediction model of UCS is also proposed to take into account the effect of salt concentration. The findings of this study can be referenced for the stabilization improvement of chloride slat- rich soft clay.展开更多
The importance of studying the behavior of the soil at the sea bottom under the action of wave force has arisen with the development of offshore engineering.In this paper,the behavior of the soft clay under the action...The importance of studying the behavior of the soil at the sea bottom under the action of wave force has arisen with the development of offshore engineering.In this paper,the behavior of the soft clay under the action of wave forces is studied by performing centrifugal tests.The soil profile and the wave characters were simulated in the centrifugal model cell according to the typical environmental conditions of the oil fields in the Bohai gulf.Test results show that the soft clay layer will be seriously softened near the upper surface under the maximum wave height and slightly affected in the deeper layer,and that no liquefaction was recorded in the silty sand sublayer during the test.It is proven that the centrifugal test is a valid technique for simulating the interaction between soil and wave.展开更多
Steel catenary risers (SCR) have become an enabling technology for deepwater environments. A comprehensive review was conducted on recent research that examined interactions between deepwater steel catenary risers a...Steel catenary risers (SCR) have become an enabling technology for deepwater environments. A comprehensive review was conducted on recent research that examined interactions between deepwater steel catenary risers and soft clay seabeds. This included the STRIDE (steel risers in deepwater environments) and CARISIMA (catenary riser soil interaction model for global riser analysis) joint jndustry jrogram's test data as well as information from existing papers.展开更多
Soft clay may cause quasi preconsolidation effect under the constant hydrostatic pressure after some time. The result of drained triaxial test represents the effective stress yield surface, which can be described by ...Soft clay may cause quasi preconsolidation effect under the constant hydrostatic pressure after some time. The result of drained triaxial test represents the effective stress yield surface, which can be described by simple binary linear fabric model. Therefore the pore pressure and deformation of clay can be decided. It also can be used to resolve the real boundary problems with finite element method.展开更多
The influence of different features of natural soft clays,namely anisotropy,destructuration and viscosity,on modelling the time-dependent behaviour of Murro embankment was investigated.The newly developed elasto-visco...The influence of different features of natural soft clays,namely anisotropy,destructuration and viscosity,on modelling the time-dependent behaviour of Murro embankment was investigated.The newly developed elasto-viscoplastic models were enhanced for determining viscosity parameters in a straightforward way and adopted for the finite element analysis.The same set of common parameters determined from conventional triaxial and oedometer tests was employed for all models,with additional parameters required for representing different soil features.The finite element predictions by using models coupled with BIOT's consolidation theory were compared with each other and with field data for settlement,horizontal displacement and excess pore pressures.In addition,the stress paths under the embankment loading were also compared with each other to improve the understanding of the effect of different soil features.All simulations demonstrate that all three features significantly influence the predictions.As a consequence,accounting for soil features needs to be carefully considered when they are applied to a construction site.展开更多
The results of undrained cyclic triaxial tests on three types of clays are collected and a relationship among the accumulated strain, the initial stress state, cyclic stress in the soil, as well as the number of cycle...The results of undrained cyclic triaxial tests on three types of clays are collected and a relationship among the accumulated strain, the initial stress state, cyclic stress in the soil, as well as the number of cycles is established based on the experimental data. With this relationship, a procedure is proposed for subsidence and stability analysis on soft clay under the action of cyclic loads.展开更多
Presented is the numerical analysis of settlements of soft soil by a 2-D dynamic effective stress FEM method. The model based on the results of cyclic triaxial tests on the reconstituted soft Ariake clay is used to pr...Presented is the numerical analysis of settlements of soft soil by a 2-D dynamic effective stress FEM method. The model based on the results of cyclic triaxial tests on the reconstituted soft Ariake clay is used to predict the wave induced excess pore water pressure and residual strain of soft clay. The settlements of two types of breakwaters on the soft clay under ocean wave load, a low embankment subjected to traffic load and the tunnel surrounded by soft clay in Shanghai subjected to locomotive load are calculated as examples.展开更多
The distribution of saturated soft clay is greatly wide in China. The current main measures adopted to deal with soft soil foundations may lead to environmental pollution, even some engineering accidents may happen on...The distribution of saturated soft clay is greatly wide in China. The current main measures adopted to deal with soft soil foundations may lead to environmental pollution, even some engineering accidents may happen on soft soil foundations. In order to solve engineering problems of saturated soft soil foundations well, researches of mechanical properties of them are necessary. One of the most important mechanical characteristics of saturated soft clay is its cyclic accumulative deformation under cyclic loadings. For saturated soft clay, the cyclic accumulative deformation is similar to the creep behavior under static loadings. Therefore, the cyclic accumulative deformation is equivalent to the creep, the number of loading cycles is seen as the time, and this study develops a practical method for predicting the cyclic accumulative deformation of saturated soft clay with the creep theory. The method is a pseudostatic elasto-plastic finite element method implemented by ABAQUS software. A fitted equation between cyclic accumulative strain and number of loading cycles and the empirical relationship of parameters of fitted equation were established with aseries of cyclic triaxial compression tests. Then with this empirical relationship of parameters, the method developed by this study was employed to predict the cyclic accumulative deformation under cyclic triaxial tension tests. Predicted results were in good agreement with test results, and the effectiveness of this method was thus validated for different stress states. The method was then applied in analyzing the cyclic accumulative deformation for soft soil foundation of a pile-supported wharf structure.展开更多
Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian ...Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined.展开更多
To investigate the soil behaviors in a direct current field on both spatial and temporal scales, a 1: 5 scale model test was conducted in laboratory to simulate the two-dimensional (2D) electro-osmotic consolidation o...To investigate the soil behaviors in a direct current field on both spatial and temporal scales, a 1: 5 scale model test was conducted in laboratory to simulate the two-dimensional (2D) electro-osmotic consolidation of soft clay foundation. Volume of drainage, intensity, voltage, water content and pH value of water collected in the cathodes were monitored. The pH values of soil and the mass of anodes were measured before and after the test. The test results indicate that the unsaturated state, resultant from fissures induced by the differences in water contents, is favorable to dynamic compaction of soil during electro-osmotic drainage. The results also demonstrate that water content, degree of saturation and electric potential distributions can be used to deduce the electro-osmotic drainage process. Water content of soil decreases first near electrodes, while keeps nearly constant in the center of the model. The area with constant water content is larger than half of the sample surface. Moving anodes towards cathodes by about one third of the electrode spacing is effective to improve the treatment effect after electro-osmosis stops due to the large resistance. Moreover, it is observed that during electro-osmosis, the corrosion rate of anodes becomes smaller, while the variation in pH values of soil near anodes becomes larger.展开更多
Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of ...Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of cement and a kind of industrial wastes, i.e. granulated blast furnace slag, on stabilization of surplus soft clay. The results showed that the cement and slag can successfully stabilize Ariake clays even though this high organic clay fails to be stabilized by lime and cement. Addition of slag in cement for stabilization induces higher strength than cement alone for longer curing time. The application of the cement with slag is more suitable than cement alone for stabilization because of economical consideration.展开更多
In recent years, reconstituted small samples have often been used to assess the performance of radial consolidation due to prefabricated vertical drains(PVDs), but the permeability and compressibility of samples of un...In recent years, reconstituted small samples have often been used to assess the performance of radial consolidation due to prefabricated vertical drains(PVDs), but the permeability and compressibility of samples of undisturbed soil often differ from those of the remoulded ones. The problem seems more complex in marine environment due to the presence of random coarse particles including gravels, shells and natural partings. Performing small-scale laboratory experiment with reconstituted samples, especially in marine environment, cannot predict the exact soil behaviour in the field. This paper describes an experimental programme that measures radial consolidation using a conventional Rowe cell and a largescale consolidometer, where the samples of undisturbed soil obtained from a site along the Pacific Highway(north of Sydney) were compared using measured settlements and excess pore pressures.Moreover, this paper highlights the implications of the smear effect and sample size influence, which are imperative in translating the laboratory testing practices to actual real-life behaviour. The effect of vacuum pressure on the coefficient of radial consolidation of a large-scale undisturbed test specimen is also discussed. The paper demonstrates that the extent of smear zone in the field can be very similar to the large-scale laboratory consolidation test using a scaled-down drain and mandrel, but considerably different from the data obtained for small laboratory specimens.展开更多
A one-dimensional consolidation-creep model test on the creep deformation of soft muddy clay in the littoral area of Tianjin is performed. A nonlinear rheologic model is established and the model coefficients are dete...A one-dimensional consolidation-creep model test on the creep deformation of soft muddy clay in the littoral area of Tianjin is performed. A nonlinear rheologic model is established and the model coefficients are determined, in consideration of the characteristics of soft muddy clay. Furthermore, a settlement equation is deduced from the theologic model and verified by the field settlement measurements of Beitang Reservoir dam in Tianjin littoral area. Finally, the settlement e- quation is applied in calculating the settlement of "FAIRWAY-" suction dredger, which sunk in the external channel of Tianjin Port, induced by the soft clay consolidation of seabed. These results provide useful information for the decision of salvage plan.展开更多
Characteristic of cyclic loading due to passing wheels is associated with one-way loading without stress reversal,which includes a simultaneous cyclic variation of vertical normal stress and horizontal normal stress l...Characteristic of cyclic loading due to passing wheels is associated with one-way loading without stress reversal,which includes a simultaneous cyclic variation of vertical normal stress and horizontal normal stress lasting for a long period of time and generally takes place in partially-drained conditions.Therefore,it is of great practical relevance to study the deformation behaviour according to the characteristic of traffic loading.In this work,a series of one-way stress-controlled cyclic triaxial tests with a simultaneous variation of the vertical and horizontal stress components during cyclic loading were conducted to investigate the deformation behaviour of natural K_0-consolidated soft clay in partially-drained conditions.Test results demonstrate that not only the deviator part of the stress rules accumulation but also the volumetric part significantly contributes.While the deviator part of the stress amplitude is held constant,the increase amplitude of cyclic confining pressure will promote the development of both permanent volumetric strain and axial strain significantly.Furthermore,the effects of cyclic confining pressure on the deformation of natural K_0-consolidated soft clay was quantified.Finally,an empirical formula for permanent axial strain considering the effects of cyclic confining pressure was proposed which can be used for feasibility studies or for the preliminary design of foundations on K_0-consolidated soft clay subjected to traffic loading.展开更多
In-situ vane shear test is frequently performed to determine shear strength for slope stability analysis in Tianjin New Harbor.However,the soil shear strength varies with the shear plane orientation.A possible means t...In-situ vane shear test is frequently performed to determine shear strength for slope stability analysis in Tianjin New Harbor.However,the soil shear strength varies with the shear plane orientation.A possible means to reduce the effect of directional dependency of shear strength is to convert the in-situ vane shear strength into undrained shear strength parameters.A method of converting in-situ vane shear strength into undrained shear strength parameters is presented.The shear strength parameters determined for all of the in-situ vane shear strengths are subjected to statistical regression analysis to take into consideration the possible effect of non-homogeneity in the soft clay deposit.Using the regressed shear strength parameters,slope stability analyses are performed for five existing soil slopes.The results of stability analyses indicate that the safety factors obtained from the converted parameters reflect the state of the slopes analyzed much better than those obtained from in-situ vane shear strength and laboratory consolidated-undrained and unconsolidated-undrained strength parameters.It is concluded that the presented methsod of determining undrained shear strength parameters for in-situ vane shear strength is effective.展开更多
In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of accelerat...In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of acceleration, displacement and internal forces was examined. The test results indicate that the seismic acceleration responses of models are generally greater than the surrounding soil surface in the period ranges of 2–10 seconds. Foundation instant settlements for 4×4 and 3×3 piled raft (with pile spacing equal to 4 and 6 times pile diameter) are somewhat close to each other at the end of the earthquake, but reconsolidation settlements are greater for 3×3 piled raft. The seismic acceleration of superstructure, the uneven settlement of the foundation and the maximum bending moment of pile are relatively lower for 3×3 piled raft. Successive earthquakes lead to the softening behavior of soft clay, which causes a reduction of the pile bearing capacity and thus loads are transferred from the pile group to the raft. For the case of a 3×3 piled raft, there is relatively smaller change of the load sharing ratio of the pile group and raft after the earthquake and the distribution of maximum bending moments at the pile head is more uniform.展开更多
Owing to different influence factors of foundation soil,the initial stress state of the soil under various working conditions is complex.To simulate this situation,in this paper,a series of tests on undisturbed soft c...Owing to different influence factors of foundation soil,the initial stress state of the soil under various working conditions is complex.To simulate this situation,in this paper,a series of tests on undisturbed soft clay under pure principal stress axis rotation were carried out by using the hollow cylinder apparatus(HCA).The influence of initial consolidation angle ζ(the angle between the vertical direction and direction of the applied load in consolidation)and intermediate principal stress coefficient b on pore water pressure accumulation of undisturbed soft clay were mainly studied.The test results show that,during pure principal stress axis rotation,the pore water pressure accumulation of the undisturbed soft clay fluctuates and increases with the rotation of the major principal stress;the values of major principal stress anglesα,corresponding to the peak value of the pore water pressure in a certain cycle,are different with different initial consolidation angles;the pore water pressure accumulation of soft clay is greatly affected by the intermediate principal stress coefficient b.With the fixed initial consolidation angle ζ,the variation trend of the maximum pore water pressure for each cycle is appropriately the same with different b values.With the increase of cycles,the difference value of pore water pressure between b=0 and b=1 in each cycle increases gradually with different initial consolidation angles ζ.While with different initial consolidation anglesζ,the increase of the pore water pressure when b increases from 0 to 0.5 is different with that when b increases from 0.5 to 1;the variation of maximum pore water pressure withζis significantly affected by the value of b;the value of maximum pore water pressure increases with the cycle number increases under all test conditions,but the growth rate decreases gradually.And the variation of maximum pore water pressure with the cycle number N is obviously influenced by both ζ and b.展开更多
Marine geological disasters occurred frequently in the deep-water slope area of the northern South China Sea,especially submarine landslides,which caused serious damage to marine facilities.The cyclic elastoplastic mo...Marine geological disasters occurred frequently in the deep-water slope area of the northern South China Sea,especially submarine landslides,which caused serious damage to marine facilities.The cyclic elastoplastic model that can describe the cyclic stress-strain response characteristic for soft clay,is embedded into the coupled Eulerian-Lagrangian(CEL)algorithm of ABAQUS by means of subroutine interface technology.On the basis of CEL technique and undrained cyclic elastoplastic model,a method for analyzing the dynamic instability process of marine slopes under the action of earthquake load is developed.The rationality for cyclic elastoplastic constitutive model is validated by comparing its calculated results with those of von Mises model built in Abaqus.The dynamic instability process of slopes under different conditions are analyzed.The results indicate that the deformation accumulation of soft clay have a significant effect on the dynamic instability process of submarine slopes under earthquake loading.The cumulative deformation is taken into our model and this makes the calculated final deformation of the slope under earthquake load larger than the results of conventional numerical method.When different contact conditions are used for analysis,the smaller the friction coefficient is,the larger the deformation of slopes will be.A numerical analysis method that can both reflect the dynamic properties of soft clay and display the dynamic instability process of submarine landslide is proposed,which could visually predict the topographies of the previous and post failure for submarine slope.展开更多
文摘In situ inflow and outflow permeability tests with the BAT probe at SarapuíII soft clay test site are presented.A description of the BAT permeability test is provided,discussing its advantages and shortcomings,especially in the case of very soft clays under low stresses.Pore pressures were monitored during probe installation and were found to be slightly lower than piezocone u2 pore pressures,consistent with the position of the filter.The role of filter tip saturation was investigated after the usual saturation procedure provided an unsatisfactory pore pressure response during probe installation.Results show that the vacuum saturation procedure provides adequate response during installation and increases the reliability of the coefficient of permeability determination in early measurements.Both inflow and outflow tests yielded similar results,indicating that careful execution of the test can lead to good test repeatability regardless of the loading condition.Various sequences of alternated inflow and outflow tests have yielded similar results,indicating that soil reconsolidation and filter clogging were negligible in the tests performed.Data are presented concerning the relationship between index parameters and the in situ coefficient of permeability for SarapuíII clay,which plot outside the range of existing databases.
文摘The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the development of four soft computing models:YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJCSA-MLPnet.First of all,the Yeo-Johnson(YJ)transformation technique was used to stabilize the variance of data and make it more suitable for parametric statistical models that assume normality and equal variances.This technique is expected to improve the accuracy of friction angle prediction models.The friction angle prediction models then utilized multi-layer perceptron neural networks(MLPnet)and metaheuristic optimization algorithms to further enhance performance,including flower pollination algorithm(FPA),coral reefs optimization(CRO),ant colony optimization continuous(ACOC),and cuckoo search algorithm(CSA).The prediction models without the YJ technique,i.e.FPA-MLPnet,CRO-MLPnet,ACOC-MLPnet,and CSA-MLPnet,were then compared to those with the YJ technique,i.e.YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJ-CSA-MLPnet.Among these,the YJ-CRO-MLPnet model demonstrated superior reliability,achieving an accuracy of up to 83%in predicting the friction angle of clay in practical engineering scenarios.This improvement is significant,as it represents an increase from 1.3%to approximately 20%compared to the models that did not utilize the YJ transformation technique.
基金The Natural Science Foundation of Jiangsu Province(No.BK2011618)the National Key Technology R&D Program of China during the12th Five-Year Plan Period(No.2012BAJ01B02)
文摘This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations were prepared artificially and stabilized by ordinary Portland cement with various contents. A series of UCS tests of cement stabilized clay specimen after 28 d curing were carried out. The results indicate that the increase of salt concentration results in the decrease in the UCS of cement-treated soil. The negative effect of salt concentration on the strength of cement stabilized clay directly relates to the cement content and salt concentration. The porosity-salt concentration/cement content ratio is a fundamental parameter for assessing the UCS of cement-treated salt-rich clay. An empirical prediction model of UCS is also proposed to take into account the effect of salt concentration. The findings of this study can be referenced for the stabilization improvement of chloride slat- rich soft clay.
文摘The importance of studying the behavior of the soil at the sea bottom under the action of wave force has arisen with the development of offshore engineering.In this paper,the behavior of the soft clay under the action of wave forces is studied by performing centrifugal tests.The soil profile and the wave characters were simulated in the centrifugal model cell according to the typical environmental conditions of the oil fields in the Bohai gulf.Test results show that the soft clay layer will be seriously softened near the upper surface under the maximum wave height and slightly affected in the deeper layer,and that no liquefaction was recorded in the silty sand sublayer during the test.It is proven that the centrifugal test is a valid technique for simulating the interaction between soil and wave.
文摘Steel catenary risers (SCR) have become an enabling technology for deepwater environments. A comprehensive review was conducted on recent research that examined interactions between deepwater steel catenary risers and soft clay seabeds. This included the STRIDE (steel risers in deepwater environments) and CARISIMA (catenary riser soil interaction model for global riser analysis) joint jndustry jrogram's test data as well as information from existing papers.
文摘Soft clay may cause quasi preconsolidation effect under the constant hydrostatic pressure after some time. The result of drained triaxial test represents the effective stress yield surface, which can be described by simple binary linear fabric model. Therefore the pore pressure and deformation of clay can be decided. It also can be used to resolve the real boundary problems with finite element method.
基金Project(11PJ1405700) supported by Pujiang Talent Plan of Shanghai,ChinaProject(41002091) supported by the National Natural Science Foundation of ChinaProject(PIAP-GA-2009-230638) supported by the European Community through the Program "People"
文摘The influence of different features of natural soft clays,namely anisotropy,destructuration and viscosity,on modelling the time-dependent behaviour of Murro embankment was investigated.The newly developed elasto-viscoplastic models were enhanced for determining viscosity parameters in a straightforward way and adopted for the finite element analysis.The same set of common parameters determined from conventional triaxial and oedometer tests was employed for all models,with additional parameters required for representing different soil features.The finite element predictions by using models coupled with BIOT's consolidation theory were compared with each other and with field data for settlement,horizontal displacement and excess pore pressures.In addition,the stress paths under the embankment loading were also compared with each other to improve the understanding of the effect of different soil features.All simulations demonstrate that all three features significantly influence the predictions.As a consequence,accounting for soil features needs to be carefully considered when they are applied to a construction site.
文摘The results of undrained cyclic triaxial tests on three types of clays are collected and a relationship among the accumulated strain, the initial stress state, cyclic stress in the soil, as well as the number of cycles is established based on the experimental data. With this relationship, a procedure is proposed for subsidence and stability analysis on soft clay under the action of cyclic loads.
基金National Natural Science Foundation of China(Grant No.59809004)
文摘Presented is the numerical analysis of settlements of soft soil by a 2-D dynamic effective stress FEM method. The model based on the results of cyclic triaxial tests on the reconstituted soft Ariake clay is used to predict the wave induced excess pore water pressure and residual strain of soft clay. The settlements of two types of breakwaters on the soft clay under ocean wave load, a low embankment subjected to traffic load and the tunnel surrounded by soft clay in Shanghai subjected to locomotive load are calculated as examples.
基金funded by Science Commission Fund of Chongqing(Grant No.cstc2016jcyj A0123)Open Fund of Key Laboratory of regulation technology for inlandwaterway in transportation industry of Chongqing Jiaotong University (Grant No. NHHD-201506)
文摘The distribution of saturated soft clay is greatly wide in China. The current main measures adopted to deal with soft soil foundations may lead to environmental pollution, even some engineering accidents may happen on soft soil foundations. In order to solve engineering problems of saturated soft soil foundations well, researches of mechanical properties of them are necessary. One of the most important mechanical characteristics of saturated soft clay is its cyclic accumulative deformation under cyclic loadings. For saturated soft clay, the cyclic accumulative deformation is similar to the creep behavior under static loadings. Therefore, the cyclic accumulative deformation is equivalent to the creep, the number of loading cycles is seen as the time, and this study develops a practical method for predicting the cyclic accumulative deformation of saturated soft clay with the creep theory. The method is a pseudostatic elasto-plastic finite element method implemented by ABAQUS software. A fitted equation between cyclic accumulative strain and number of loading cycles and the empirical relationship of parameters of fitted equation were established with aseries of cyclic triaxial compression tests. Then with this empirical relationship of parameters, the method developed by this study was employed to predict the cyclic accumulative deformation under cyclic triaxial tension tests. Predicted results were in good agreement with test results, and the effectiveness of this method was thus validated for different stress states. The method was then applied in analyzing the cyclic accumulative deformation for soft soil foundation of a pile-supported wharf structure.
基金supported bythe National Natural Science Foundation of China(Grant Nos.50579006,50639010 and 50909014)
文摘Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined.
基金Supported by the National Natural Science Foundation of China (50879076)
文摘To investigate the soil behaviors in a direct current field on both spatial and temporal scales, a 1: 5 scale model test was conducted in laboratory to simulate the two-dimensional (2D) electro-osmotic consolidation of soft clay foundation. Volume of drainage, intensity, voltage, water content and pH value of water collected in the cathodes were monitored. The pH values of soil and the mass of anodes were measured before and after the test. The test results indicate that the unsaturated state, resultant from fissures induced by the differences in water contents, is favorable to dynamic compaction of soil during electro-osmotic drainage. The results also demonstrate that water content, degree of saturation and electric potential distributions can be used to deduce the electro-osmotic drainage process. Water content of soil decreases first near electrodes, while keeps nearly constant in the center of the model. The area with constant water content is larger than half of the sample surface. Moving anodes towards cathodes by about one third of the electrode spacing is effective to improve the treatment effect after electro-osmosis stops due to the large resistance. Moreover, it is observed that during electro-osmosis, the corrosion rate of anodes becomes smaller, while the variation in pH values of soil near anodes becomes larger.
文摘Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of cement and a kind of industrial wastes, i.e. granulated blast furnace slag, on stabilization of surplus soft clay. The results showed that the cement and slag can successfully stabilize Ariake clays even though this high organic clay fails to be stabilized by lime and cement. Addition of slag in cement for stabilization induces higher strength than cement alone for longer curing time. The application of the cement with slag is more suitable than cement alone for stabilization because of economical consideration.
基金the Australian Research Council (ARC) Centre of Excellence in Geotechnical Science and Engineering and the Centre for Geomechanics and Railway Engineering (CGRE) of University of Wollongong (UOW) for the financial support
文摘In recent years, reconstituted small samples have often been used to assess the performance of radial consolidation due to prefabricated vertical drains(PVDs), but the permeability and compressibility of samples of undisturbed soil often differ from those of the remoulded ones. The problem seems more complex in marine environment due to the presence of random coarse particles including gravels, shells and natural partings. Performing small-scale laboratory experiment with reconstituted samples, especially in marine environment, cannot predict the exact soil behaviour in the field. This paper describes an experimental programme that measures radial consolidation using a conventional Rowe cell and a largescale consolidometer, where the samples of undisturbed soil obtained from a site along the Pacific Highway(north of Sydney) were compared using measured settlements and excess pore pressures.Moreover, this paper highlights the implications of the smear effect and sample size influence, which are imperative in translating the laboratory testing practices to actual real-life behaviour. The effect of vacuum pressure on the coefficient of radial consolidation of a large-scale undisturbed test specimen is also discussed. The paper demonstrates that the extent of smear zone in the field can be very similar to the large-scale laboratory consolidation test using a scaled-down drain and mandrel, but considerably different from the data obtained for small laboratory specimens.
基金the National Natural Science Foundation of China (Grant No.50579046)the Science and Technology Project of West China Traffic Construction (Grant No.200632800003-06)
文摘A one-dimensional consolidation-creep model test on the creep deformation of soft muddy clay in the littoral area of Tianjin is performed. A nonlinear rheologic model is established and the model coefficients are determined, in consideration of the characteristics of soft muddy clay. Furthermore, a settlement equation is deduced from the theologic model and verified by the field settlement measurements of Beitang Reservoir dam in Tianjin littoral area. Finally, the settlement e- quation is applied in calculating the settlement of "FAIRWAY-" suction dredger, which sunk in the external channel of Tianjin Port, induced by the soft clay consolidation of seabed. These results provide useful information for the decision of salvage plan.
基金Projects(51238009,51578426,51308420)supported by the National Natural Science Foundation of China
文摘Characteristic of cyclic loading due to passing wheels is associated with one-way loading without stress reversal,which includes a simultaneous cyclic variation of vertical normal stress and horizontal normal stress lasting for a long period of time and generally takes place in partially-drained conditions.Therefore,it is of great practical relevance to study the deformation behaviour according to the characteristic of traffic loading.In this work,a series of one-way stress-controlled cyclic triaxial tests with a simultaneous variation of the vertical and horizontal stress components during cyclic loading were conducted to investigate the deformation behaviour of natural K_0-consolidated soft clay in partially-drained conditions.Test results demonstrate that not only the deviator part of the stress rules accumulation but also the volumetric part significantly contributes.While the deviator part of the stress amplitude is held constant,the increase amplitude of cyclic confining pressure will promote the development of both permanent volumetric strain and axial strain significantly.Furthermore,the effects of cyclic confining pressure on the deformation of natural K_0-consolidated soft clay was quantified.Finally,an empirical formula for permanent axial strain considering the effects of cyclic confining pressure was proposed which can be used for feasibility studies or for the preliminary design of foundations on K_0-consolidated soft clay subjected to traffic loading.
文摘In-situ vane shear test is frequently performed to determine shear strength for slope stability analysis in Tianjin New Harbor.However,the soil shear strength varies with the shear plane orientation.A possible means to reduce the effect of directional dependency of shear strength is to convert the in-situ vane shear strength into undrained shear strength parameters.A method of converting in-situ vane shear strength into undrained shear strength parameters is presented.The shear strength parameters determined for all of the in-situ vane shear strengths are subjected to statistical regression analysis to take into consideration the possible effect of non-homogeneity in the soft clay deposit.Using the regressed shear strength parameters,slope stability analyses are performed for five existing soil slopes.The results of stability analyses indicate that the safety factors obtained from the converted parameters reflect the state of the slopes analyzed much better than those obtained from in-situ vane shear strength and laboratory consolidated-undrained and unconsolidated-undrained strength parameters.It is concluded that the presented methsod of determining undrained shear strength parameters for in-situ vane shear strength is effective.
基金National Natural Science Foundation of China under Grand No.41372274
文摘In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of acceleration, displacement and internal forces was examined. The test results indicate that the seismic acceleration responses of models are generally greater than the surrounding soil surface in the period ranges of 2–10 seconds. Foundation instant settlements for 4×4 and 3×3 piled raft (with pile spacing equal to 4 and 6 times pile diameter) are somewhat close to each other at the end of the earthquake, but reconsolidation settlements are greater for 3×3 piled raft. The seismic acceleration of superstructure, the uneven settlement of the foundation and the maximum bending moment of pile are relatively lower for 3×3 piled raft. Successive earthquakes lead to the softening behavior of soft clay, which causes a reduction of the pile bearing capacity and thus loads are transferred from the pile group to the raft. For the case of a 3×3 piled raft, there is relatively smaller change of the load sharing ratio of the pile group and raft after the earthquake and the distribution of maximum bending moments at the pile head is more uniform.
基金financially supported by the National Key Research and Development Program of China(Grant No.2019YFC1510803-2)the National Natural Science Foundation of China(Grant Nos.51639002 and 51809034)+3 种基金the China Postdoctoral Science Foundation(Grant No.2019M662533)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical EngineeringInstitute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z017012)the Open Fund of State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP2014)。
文摘Owing to different influence factors of foundation soil,the initial stress state of the soil under various working conditions is complex.To simulate this situation,in this paper,a series of tests on undisturbed soft clay under pure principal stress axis rotation were carried out by using the hollow cylinder apparatus(HCA).The influence of initial consolidation angle ζ(the angle between the vertical direction and direction of the applied load in consolidation)and intermediate principal stress coefficient b on pore water pressure accumulation of undisturbed soft clay were mainly studied.The test results show that,during pure principal stress axis rotation,the pore water pressure accumulation of the undisturbed soft clay fluctuates and increases with the rotation of the major principal stress;the values of major principal stress anglesα,corresponding to the peak value of the pore water pressure in a certain cycle,are different with different initial consolidation angles;the pore water pressure accumulation of soft clay is greatly affected by the intermediate principal stress coefficient b.With the fixed initial consolidation angle ζ,the variation trend of the maximum pore water pressure for each cycle is appropriately the same with different b values.With the increase of cycles,the difference value of pore water pressure between b=0 and b=1 in each cycle increases gradually with different initial consolidation angles ζ.While with different initial consolidation anglesζ,the increase of the pore water pressure when b increases from 0 to 0.5 is different with that when b increases from 0.5 to 1;the variation of maximum pore water pressure withζis significantly affected by the value of b;the value of maximum pore water pressure increases with the cycle number increases under all test conditions,but the growth rate decreases gradually.And the variation of maximum pore water pressure with the cycle number N is obviously influenced by both ζ and b.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(No.51179174).
文摘Marine geological disasters occurred frequently in the deep-water slope area of the northern South China Sea,especially submarine landslides,which caused serious damage to marine facilities.The cyclic elastoplastic model that can describe the cyclic stress-strain response characteristic for soft clay,is embedded into the coupled Eulerian-Lagrangian(CEL)algorithm of ABAQUS by means of subroutine interface technology.On the basis of CEL technique and undrained cyclic elastoplastic model,a method for analyzing the dynamic instability process of marine slopes under the action of earthquake load is developed.The rationality for cyclic elastoplastic constitutive model is validated by comparing its calculated results with those of von Mises model built in Abaqus.The dynamic instability process of slopes under different conditions are analyzed.The results indicate that the deformation accumulation of soft clay have a significant effect on the dynamic instability process of submarine slopes under earthquake loading.The cumulative deformation is taken into our model and this makes the calculated final deformation of the slope under earthquake load larger than the results of conventional numerical method.When different contact conditions are used for analysis,the smaller the friction coefficient is,the larger the deformation of slopes will be.A numerical analysis method that can both reflect the dynamic properties of soft clay and display the dynamic instability process of submarine landslide is proposed,which could visually predict the topographies of the previous and post failure for submarine slope.