光伏故障检测对光伏电站智能运维具有重要意义。针对光伏组件红外图像中热斑目标小、难检测的问题,研究了基于改进Faster R CNN的光伏组件红外热斑故障检测模型。将Swin Transformer作为Faster R CNN模型中的特征提取模块,捕获图像的全...光伏故障检测对光伏电站智能运维具有重要意义。针对光伏组件红外图像中热斑目标小、难检测的问题,研究了基于改进Faster R CNN的光伏组件红外热斑故障检测模型。将Swin Transformer作为Faster R CNN模型中的特征提取模块,捕获图像的全局信息,建立特征之间的依赖关系,提高模型的建模能力;进一步利用BiFPN进行特征融合,改善了热斑故障由于目标小和特征不明显容易被模型忽略掉的问题;同时为了抑制光伏红外图像中背景和噪声的干扰,加入轻量级注意力模块CBAM,使模型更加关注重要通道和关键区域,提高对热斑故障检测精度。在自建光伏组件图像数据集上进行实验,热斑故障检测精度高达915,验证了本文模型对光伏组件热斑故障检测的有效性。展开更多
文摘热轧带钢是钢铁行业的重要产品,其表面缺陷是影响产品质量的重要因素。针对传统缺陷检测算法存在的过程繁琐、精度不足和效率低下等问题,提出一种基于改进更快速区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)的检测算法,实现对热轧带钢表面缺陷的高效、高精度检测。首先,采用特征相加的方法对底层细节特征和高层语义特征进行融合;然后,采用精准的感兴趣区域池化(precise region of interest pooling,Precise ROI Pooling)获取固定大小的特征向量,避免特征出现位置偏差;最后,利用均值偏移聚类算法对带钢数据集进行聚类,获得适用于热轧带钢表面缺陷检测的先验框尺寸。实验结果表明,所提算法在热轧带钢表面缺陷检测数据集上的平均精度均值达到了85.34%,检测速度为23.5帧/s,且鲁棒性良好,满足实际的工业检测需求。
文摘光伏故障检测对光伏电站智能运维具有重要意义。针对光伏组件红外图像中热斑目标小、难检测的问题,研究了基于改进Faster R CNN的光伏组件红外热斑故障检测模型。将Swin Transformer作为Faster R CNN模型中的特征提取模块,捕获图像的全局信息,建立特征之间的依赖关系,提高模型的建模能力;进一步利用BiFPN进行特征融合,改善了热斑故障由于目标小和特征不明显容易被模型忽略掉的问题;同时为了抑制光伏红外图像中背景和噪声的干扰,加入轻量级注意力模块CBAM,使模型更加关注重要通道和关键区域,提高对热斑故障检测精度。在自建光伏组件图像数据集上进行实验,热斑故障检测精度高达915,验证了本文模型对光伏组件热斑故障检测的有效性。