By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual...By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual hydrophilic modified polyurethane curing agent.Research revealed that introducing PEG400 for hydrophilic chain segments and sodium hydroxyethyl sulfonate for hydrophilic ionic groups in the polyurethane curing agent component leads to a uniform distribution of hydrophilic components,significantly enhancing compatibility with the aqueous polyol component,and results in excellent film performance.The synthesis process and film were characterized using Fourier transform infrared spectroscopy and high-resolution scanning electron microscopy in the study.展开更多
Steam-cured condition is found to cause larger porosity and worse properties of concrete compared with normal curing condition. For the sake of seeking effective measurements to eliminate this bad effect of steam-cure...Steam-cured condition is found to cause larger porosity and worse properties of concrete compared with normal curing condition. For the sake of seeking effective measurements to eliminate this bad effect of steam-cured condition on concrete, the water sorptivity and pore structure of steam-cured concretes exposed to different subsequent curing conditions were investigated after steam-curing treatment. The capillary absorption coefficient and porosity of the corresponding concretes were analyzed, and their mechanisms were also discussed. The results indicate that water sorptivity and pore structure of steam-cured concrete are greatly influenced by the curing condition used in subsequent ages. Exposure steam-cured concrete to air condition has an obviously bad effect on its properties and microstructures. Adopting subsequent curing of immersing steam-cured concrete into about 20℃ water after steam curing period can significantly decrease its capillary absorption coefficient and porosity. Steam-cured concrete with 7 d water curing has minimum capillary absorption coefficient and total porosity. Its water sorptivity is decreased by 23% compared with standard curing concrete and the porosity is 9.6% lower. Moreover, the corresponding gradient of water sorptivity and porosity of steam-cured concrete both decrease, thus mictostructure of concrete becomes more homogeneous.展开更多
Cure behaviors and water up-take evaluation of a low cost, ecofriendly and water soluble epoxy resin prepared by reaction between epichlorohydrin and PEG400, PEG600 and PEG1000, respectively, were investigated using n...Cure behaviors and water up-take evaluation of a low cost, ecofriendly and water soluble epoxy resin prepared by reaction between epichlorohydrin and PEG400, PEG600 and PEG1000, respectively, were investigated using non-isothermal differential scanning calorimetry (DSC) and gravimetrical method, respectively. Factors affecting the cure behaviors as well as water up-take of waterborne epoxy resins, such as amount of triethylenetetramine (TETA) and triethylene diamine (TEDA), PEG molecular weight, curing temperature, were systematically investigated. The prepared water soluble epoxy resins can be cured under room temperature with the shape of the curing curves similar to that expected for an autocatalytic reaction.展开更多
Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this probl...Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this problem, water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing, and expansive effect of expansive agent was improved. Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated. Based on a given efficient diffusion distance of water stored in water-releasing material, the mass and real water-cement ratio of cured cement paste were estimated. At the same time, the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated.展开更多
To study the effects of secondary water( SW) curing of 20 ℃ for 7 d on concrete long-term strength and durability after steam-autoclave curing, concrete specimens were fabricated and subjected to standard,steam-autoc...To study the effects of secondary water( SW) curing of 20 ℃ for 7 d on concrete long-term strength and durability after steam-autoclave curing, concrete specimens were fabricated and subjected to standard,steam-autoclave or steamautoclave + SW curing. The compressive strength,accelerated carbonation depth, and Coulomb electric charges of the specimens were tested at the ages of 28,90,180,and 360 d.Furthermore,mercury intrusion porosimetry experiments on the specimens were conducted at the age of 180 d. Results indicate that compared with standard curing,steam-autoclave curing can enhance the early-age strength of concrete; however, it is detrimental to the development of later-age strength, and reduces chloride and carbonation resistance. Due to the replenishment of water into concrete,SW curing can refine the micro-pore size and decrease the ratio of harmful and more harmful pores in concrete. As a result,SW curing is effective in improving the long-term strength and durability of steamautoclaved concrete,and makes it approach that under standard curing. The improvement amplitudes of SW curing on the concrete compressive strength, chloride and carbonation resistance at 360 d can reach 20. 3%,48. 6%,and 80. 9%,respectively.展开更多
Curing methods are one of the most important factors in determining the quality and compactness of cover concrete.The effect of curing methods on the water absorption and sorptivity coefficient of cover concrete with ...Curing methods are one of the most important factors in determining the quality and compactness of cover concrete.The effect of curing methods on the water absorption and sorptivity coefficient of cover concrete with the substitution ratio of fly ash(FA)and ground granulated blast slag(GGBS)for cement between 30 wt%and 40 wt%was studied by capillary water absorption test.The vacuum saturation test and mercury intrusion test were employed to characterize these differences in the pore structure of cover concrete under different curing methods.With further analysis of the compactness of microstructure by SEM,the mechanism of the impact of curing methods on the permeability of cover concrete was revealed.The results obtained indicate that the effect of curing methods on the water absorption,sorptivity coefficient and porosity of cover concrete shows the trend of natural curing>cover curing>water curing>standard curing.It is also shown that reasonable curing is advantageous to reduce the porosity and permeability of cover concrete.In natural curing conditions,the appearance of porosity increasing and pore structure coarsening is more critical for covering concrete with mineral admixtures than for pure cement concrete.Therefore,the permeability of cover concrete with mineral admixtures is more sensitive to the early-age curing methods.展开更多
文摘By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual hydrophilic modified polyurethane curing agent.Research revealed that introducing PEG400 for hydrophilic chain segments and sodium hydroxyethyl sulfonate for hydrophilic ionic groups in the polyurethane curing agent component leads to a uniform distribution of hydrophilic components,significantly enhancing compatibility with the aqueous polyol component,and results in excellent film performance.The synthesis process and film were characterized using Fourier transform infrared spectroscopy and high-resolution scanning electron microscopy in the study.
基金Project(2008G031-18) supported by the Ministry of Railway Science and Technology Research Foundation of ChinaProject(2010R50034) supported by the Key Science and Technology Innovation Team Program of Zhejiang Province, ChinaProject(2010QZZD018) supported by Leading-edge Research Program of Central South University,China
文摘Steam-cured condition is found to cause larger porosity and worse properties of concrete compared with normal curing condition. For the sake of seeking effective measurements to eliminate this bad effect of steam-cured condition on concrete, the water sorptivity and pore structure of steam-cured concretes exposed to different subsequent curing conditions were investigated after steam-curing treatment. The capillary absorption coefficient and porosity of the corresponding concretes were analyzed, and their mechanisms were also discussed. The results indicate that water sorptivity and pore structure of steam-cured concrete are greatly influenced by the curing condition used in subsequent ages. Exposure steam-cured concrete to air condition has an obviously bad effect on its properties and microstructures. Adopting subsequent curing of immersing steam-cured concrete into about 20℃ water after steam curing period can significantly decrease its capillary absorption coefficient and porosity. Steam-cured concrete with 7 d water curing has minimum capillary absorption coefficient and total porosity. Its water sorptivity is decreased by 23% compared with standard curing concrete and the porosity is 9.6% lower. Moreover, the corresponding gradient of water sorptivity and porosity of steam-cured concrete both decrease, thus mictostructure of concrete becomes more homogeneous.
基金Funded by State Key Lab of Geohazard Prevention and Geoenvironment Protection,China(No.GZ2007-08)
文摘Cure behaviors and water up-take evaluation of a low cost, ecofriendly and water soluble epoxy resin prepared by reaction between epichlorohydrin and PEG400, PEG600 and PEG1000, respectively, were investigated using non-isothermal differential scanning calorimetry (DSC) and gravimetrical method, respectively. Factors affecting the cure behaviors as well as water up-take of waterborne epoxy resins, such as amount of triethylenetetramine (TETA) and triethylene diamine (TEDA), PEG molecular weight, curing temperature, were systematically investigated. The prepared water soluble epoxy resins can be cured under room temperature with the shape of the curing curves similar to that expected for an autocatalytic reaction.
基金Funded by the Project of National Natural Science Foundation (No. 50508034)Guangxi Key Laboratory for the Advance Materials and New Preparation Technology(No. 063006-5C-13)
文摘Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this problem, water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing, and expansive effect of expansive agent was improved. Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated. Based on a given efficient diffusion distance of water stored in water-releasing material, the mass and real water-cement ratio of cured cement paste were estimated. At the same time, the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated.
基金The Fundamental Research Funds for the Central Universities(No.2017XKQY014)
文摘To study the effects of secondary water( SW) curing of 20 ℃ for 7 d on concrete long-term strength and durability after steam-autoclave curing, concrete specimens were fabricated and subjected to standard,steam-autoclave or steamautoclave + SW curing. The compressive strength,accelerated carbonation depth, and Coulomb electric charges of the specimens were tested at the ages of 28,90,180,and 360 d.Furthermore,mercury intrusion porosimetry experiments on the specimens were conducted at the age of 180 d. Results indicate that compared with standard curing,steam-autoclave curing can enhance the early-age strength of concrete; however, it is detrimental to the development of later-age strength, and reduces chloride and carbonation resistance. Due to the replenishment of water into concrete,SW curing can refine the micro-pore size and decrease the ratio of harmful and more harmful pores in concrete. As a result,SW curing is effective in improving the long-term strength and durability of steamautoclaved concrete,and makes it approach that under standard curing. The improvement amplitudes of SW curing on the concrete compressive strength, chloride and carbonation resistance at 360 d can reach 20. 3%,48. 6%,and 80. 9%,respectively.
基金The authors would like to acknowledge the financial support provided by the National Key R&D Program of China(Grant number2018YFB1600100)this study is also funded by Shandong Transportation Science and Technology Plan(grant number 2018B44).
文摘Curing methods are one of the most important factors in determining the quality and compactness of cover concrete.The effect of curing methods on the water absorption and sorptivity coefficient of cover concrete with the substitution ratio of fly ash(FA)and ground granulated blast slag(GGBS)for cement between 30 wt%and 40 wt%was studied by capillary water absorption test.The vacuum saturation test and mercury intrusion test were employed to characterize these differences in the pore structure of cover concrete under different curing methods.With further analysis of the compactness of microstructure by SEM,the mechanism of the impact of curing methods on the permeability of cover concrete was revealed.The results obtained indicate that the effect of curing methods on the water absorption,sorptivity coefficient and porosity of cover concrete shows the trend of natural curing>cover curing>water curing>standard curing.It is also shown that reasonable curing is advantageous to reduce the porosity and permeability of cover concrete.In natural curing conditions,the appearance of porosity increasing and pore structure coarsening is more critical for covering concrete with mineral admixtures than for pure cement concrete.Therefore,the permeability of cover concrete with mineral admixtures is more sensitive to the early-age curing methods.