Based on field investigations, this paper analyzes three types of harbour basinns and navigation channel excavated on seabed in Jiaozhou Bay, get a general rule of deposition for excavated trough, it found that pollut...Based on field investigations, this paper analyzes three types of harbour basinns and navigation channel excavated on seabed in Jiaozhou Bay, get a general rule of deposition for excavated trough, it found that pollution is one of crucial factors resulting in the deposition of the excavated trough in the east shore of Jiaozhou Bay. With these results, it predicted the annual deposition thickness for the excavated trough and disclosed the fact that it can't be deposited deadly during one storm. At the same time, with two-dimensional numerical model, it studied the effects of the excavated trough and the reclamation near shore on tidal cureent and said that the excavated trough can decrease the current velocity passing through the trough about 10- 15%, but only limited inside and near the trough and there are no effect on other regions; reclamation can cut off the pollution sources and no obvious effect on the currents of the Jiaozhou Bay. Connecting the deep trough and Cangkou tidal channel with a new excavated trough can improve the current conditions on the deep trough in some degree, but not great.展开更多
On the basis of energy and continuity equations a general threshold condition for chocking in open channels is obtained and a representation in terms of the Froude number at the upstream section and other parameters i...On the basis of energy and continuity equations a general threshold condition for chocking in open channels is obtained and a representation in terms of the Froude number at the upstream section and other parameters is given to predict whether the chocking phenomenon occurs or not at the downstream section. From the general threshold condition for chocking the limit contraction ratios of the channel width are introduced for both with and without the energy losses and a criterion for excavation of the tailrace to avoid chocking is derived. An example shows that using these criterion and the representation proposed for calculating flow depth it is very easy to determine the scheme of the excavation of the open channels.展开更多
文摘Based on field investigations, this paper analyzes three types of harbour basinns and navigation channel excavated on seabed in Jiaozhou Bay, get a general rule of deposition for excavated trough, it found that pollution is one of crucial factors resulting in the deposition of the excavated trough in the east shore of Jiaozhou Bay. With these results, it predicted the annual deposition thickness for the excavated trough and disclosed the fact that it can't be deposited deadly during one storm. At the same time, with two-dimensional numerical model, it studied the effects of the excavated trough and the reclamation near shore on tidal cureent and said that the excavated trough can decrease the current velocity passing through the trough about 10- 15%, but only limited inside and near the trough and there are no effect on other regions; reclamation can cut off the pollution sources and no obvious effect on the currents of the Jiaozhou Bay. Connecting the deep trough and Cangkou tidal channel with a new excavated trough can improve the current conditions on the deep trough in some degree, but not great.
文摘On the basis of energy and continuity equations a general threshold condition for chocking in open channels is obtained and a representation in terms of the Froude number at the upstream section and other parameters is given to predict whether the chocking phenomenon occurs or not at the downstream section. From the general threshold condition for chocking the limit contraction ratios of the channel width are introduced for both with and without the energy losses and a criterion for excavation of the tailrace to avoid chocking is derived. An example shows that using these criterion and the representation proposed for calculating flow depth it is very easy to determine the scheme of the excavation of the open channels.