Background:Early singular nodular hepatocellular carcinoma(HCC)is an ideal surgical indication in clinical practice.However,almost half of the patients have tumor recurrence,and there is no reliable prognostic predict...Background:Early singular nodular hepatocellular carcinoma(HCC)is an ideal surgical indication in clinical practice.However,almost half of the patients have tumor recurrence,and there is no reliable prognostic prediction tool.Besides,it is unclear whether preoperative neoadjuvant therapy is necessary for patients with early singular nodular HCC and which patient needs it.It is critical to identify the patients with high risk of recurrence and to treat these patients preoperatively with neoadjuvant therapy and thus,to improve the outcomes of these patients.The present study aimed to develop two prognostic models to preoperatively predict the recurrence-free survival(RFS)and overall survival(OS)in patients with singular nodular HCC by integrating the clinical data and radiological features.Methods:We retrospective recruited 211 patients with singular nodular HCC from December 2009 to January 2019 at Eastern Hepatobiliary Surgery Hospital(EHBH).They all met the surgical indications and underwent radical resection.We randomly divided the patients into the training cohort(n=132)and the validation cohort(n=79).We established and validated multivariate Cox proportional hazard models by the preoperative clinicopathologic factors and radiological features for association with RFS and OS.By analyzing the receiver operating characteristic(ROC)curve,the discrimination accuracy of the models was compared with that of the traditional predictive models.Results:Our RFS model was based on HBV-DNA score,cirrhosis,tumor diameter and tumor capsule in imaging.RFS nomogram had fine calibration and discrimination capabilities,with a C-index of 0.74(95%CI:0.68-0.80).The OS nomogram,based on cirrhosis,tumor diameter and tumor capsule in imaging,had fine calibration and discrimination capabilities,with a C-index of 0.81(95%CI:0.74-0.87).The area under the receiver operating characteristic curve(AUC)of our model was larger than that of traditional liver cancer staging system,Korea model and Nomograms in Hepatectomy Patients with Hepatitis B VirusRelated Hepatocellular Carcinoma,indicating better discrimination capability.According to the models,we fitted the linear prediction equations.These results were validated in the validation cohort.Conclusions:Compared with previous radiography model,the new-developed predictive model was concise and applicable to predict the postoperative survival of patients with singular nodular HCC.Our models may preoperatively identify patients with high risk of recurrence.These patients may benefit from neoadjuvant therapy which may improve the patients’outcomes.展开更多
基金supported by grants from the Shanghai Rising-Star Program(19QA1408700)the National Natural Science Founda-tion of China(81972575 and 81521091)Clinical Research Plan of SHDC(SHDC2020CR5007)。
文摘Background:Early singular nodular hepatocellular carcinoma(HCC)is an ideal surgical indication in clinical practice.However,almost half of the patients have tumor recurrence,and there is no reliable prognostic prediction tool.Besides,it is unclear whether preoperative neoadjuvant therapy is necessary for patients with early singular nodular HCC and which patient needs it.It is critical to identify the patients with high risk of recurrence and to treat these patients preoperatively with neoadjuvant therapy and thus,to improve the outcomes of these patients.The present study aimed to develop two prognostic models to preoperatively predict the recurrence-free survival(RFS)and overall survival(OS)in patients with singular nodular HCC by integrating the clinical data and radiological features.Methods:We retrospective recruited 211 patients with singular nodular HCC from December 2009 to January 2019 at Eastern Hepatobiliary Surgery Hospital(EHBH).They all met the surgical indications and underwent radical resection.We randomly divided the patients into the training cohort(n=132)and the validation cohort(n=79).We established and validated multivariate Cox proportional hazard models by the preoperative clinicopathologic factors and radiological features for association with RFS and OS.By analyzing the receiver operating characteristic(ROC)curve,the discrimination accuracy of the models was compared with that of the traditional predictive models.Results:Our RFS model was based on HBV-DNA score,cirrhosis,tumor diameter and tumor capsule in imaging.RFS nomogram had fine calibration and discrimination capabilities,with a C-index of 0.74(95%CI:0.68-0.80).The OS nomogram,based on cirrhosis,tumor diameter and tumor capsule in imaging,had fine calibration and discrimination capabilities,with a C-index of 0.81(95%CI:0.74-0.87).The area under the receiver operating characteristic curve(AUC)of our model was larger than that of traditional liver cancer staging system,Korea model and Nomograms in Hepatectomy Patients with Hepatitis B VirusRelated Hepatocellular Carcinoma,indicating better discrimination capability.According to the models,we fitted the linear prediction equations.These results were validated in the validation cohort.Conclusions:Compared with previous radiography model,the new-developed predictive model was concise and applicable to predict the postoperative survival of patients with singular nodular HCC.Our models may preoperatively identify patients with high risk of recurrence.These patients may benefit from neoadjuvant therapy which may improve the patients’outcomes.