The degradation mechanism of enhancement-mode Al Ga N/Ga N high electron mobility transistors(HEMTs) fabricated by fluorine plasma ion implantation technology is one major concern of HEMT's reliability. It is obser...The degradation mechanism of enhancement-mode Al Ga N/Ga N high electron mobility transistors(HEMTs) fabricated by fluorine plasma ion implantation technology is one major concern of HEMT's reliability. It is observed that the threshold voltage shows a significant negative shift during the typical long-term on-state gate overdrive stress. The degradation does not originate from the presence of as-grown traps in the Al Ga N barrier layer or the generated traps during fluorine ion implantation process. By comparing the relationships between the shift of threshold voltage and the cumulative injected electrons under different stress conditions, a good agreement is observed. It provides direct experimental evidence to support the impact ionization physical model, in which the degradation of E-mode HEMTs under gate overdrive stress can be explained by the ionization of fluorine ions in the Al Ga N barrier layer by electrons injected from 2DEG channel.Furthermore, our results show that there are few new traps generated in the Al Ga N barrier layer during the gate overdrive stress, and the ionized fluorine ions cannot recapture the electrons.展开更多
The effect of high overdrive voltage on the positive bias temperature instability(PBTI)trapping behavior is investigated for GaN metal–insulator–semiconductor high electron mobility transistor(MIS-HEMT)with LPCVD-Si...The effect of high overdrive voltage on the positive bias temperature instability(PBTI)trapping behavior is investigated for GaN metal–insulator–semiconductor high electron mobility transistor(MIS-HEMT)with LPCVD-SiNx gate dielectric.A higher overdrive voltage is more effective to accelerate the electrons trapping process,resulting in a unique trapping behavior,i.e.,a larger threshold voltage shift with a weaker time dependence and a weaker temperature dependence.Combining the degradation of electrical parameters with the frequency–conductance measurements,the unique trapping behavior is ascribed to the defect energy profile inside the gate dielectric changing with stress time,new interface/border traps with a broad distribution above the channel Fermi level are introduced by high overdrive voltage.展开更多
Influences of off-state overdrive stress on the fluorine-plasma treated AlGaN/GaN high-electronic mobility transistors(HEMTs)are experimentally investigated.It is observed that the reverse leakage current between the ...Influences of off-state overdrive stress on the fluorine-plasma treated AlGaN/GaN high-electronic mobility transistors(HEMTs)are experimentally investigated.It is observed that the reverse leakage current between the gate and source decreases after the off-state stress,whereas the current between the gate and drain increases.By analyzing those changes of the reverse currents based on the Frenkel–Poole model,we realize that the ionization of fluorine ions occurs during the off-state stress.Furthermore,threshold voltage degradation is also observed after the off-state stress,but the degradations of AlGaN/GaN HEMTs treated with different F-plasma RF powers are different.By comparing the differences between those devices,we find that the F-ions incorporated in the GaN buffer layer play an important role in averting degradation.Lastly,suggestions to obtain a more stable fluorine-plasma treated AlGaN/GaN HEMT are put forwarded.展开更多
In many critical civil and emerging military applications, low-level UV detection, sometimes at single photon level, is highly desired. In this work, a mesa-type 4H-SiC UV avalanche photodiode (APD) is designed and ...In many critical civil and emerging military applications, low-level UV detection, sometimes at single photon level, is highly desired. In this work, a mesa-type 4H-SiC UV avalanche photodiode (APD) is designed and fabricated, which exhibits low leakage current and high avalanche gain. When studied by using a passive quenching circuit, the APD exhibits self-quenching characteristics due to its high differential resistance in the avalanche region. The single photon detection efficiency and dark count rate of the APD are evaluated as functions of discrimination voltage and over-drive voltage. The optimized operation conditions of the single photon counting APD are discussed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61334002,61106106,and 61474091)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(Grant No.ZHD201206)+1 种基金the New Experiment Development Funds for Xidian University,China(Grant No.SY1213)the Scientific Research Foundation for the Returned Overseas Chinese Scholars
文摘The degradation mechanism of enhancement-mode Al Ga N/Ga N high electron mobility transistors(HEMTs) fabricated by fluorine plasma ion implantation technology is one major concern of HEMT's reliability. It is observed that the threshold voltage shows a significant negative shift during the typical long-term on-state gate overdrive stress. The degradation does not originate from the presence of as-grown traps in the Al Ga N barrier layer or the generated traps during fluorine ion implantation process. By comparing the relationships between the shift of threshold voltage and the cumulative injected electrons under different stress conditions, a good agreement is observed. It provides direct experimental evidence to support the impact ionization physical model, in which the degradation of E-mode HEMTs under gate overdrive stress can be explained by the ionization of fluorine ions in the Al Ga N barrier layer by electrons injected from 2DEG channel.Furthermore, our results show that there are few new traps generated in the Al Ga N barrier layer during the gate overdrive stress, and the ionized fluorine ions cannot recapture the electrons.
基金Project supported by the National Key Research and Development Program,China(Grant No.2017YFB0402800)the Key Research and Development Program of Guangdong Province,China(Grant No.2019B010128002)+1 种基金the National Natural Science Foundation of China(Grant No.U1601210)the Natural Science Foundation of Guangdong Province,China(Grant No.2015A030312011)。
文摘The effect of high overdrive voltage on the positive bias temperature instability(PBTI)trapping behavior is investigated for GaN metal–insulator–semiconductor high electron mobility transistor(MIS-HEMT)with LPCVD-SiNx gate dielectric.A higher overdrive voltage is more effective to accelerate the electrons trapping process,resulting in a unique trapping behavior,i.e.,a larger threshold voltage shift with a weaker time dependence and a weaker temperature dependence.Combining the degradation of electrical parameters with the frequency–conductance measurements,the unique trapping behavior is ascribed to the defect energy profile inside the gate dielectric changing with stress time,new interface/border traps with a broad distribution above the channel Fermi level are introduced by high overdrive voltage.
基金Project supported by the Laboratory Open Fund of Beijing Smart-Chip Microelectronics Technology Co.,Ltdthe National Natural Science Foundation of China(Grant Nos.11690042 and 12035019)+1 种基金the National Major Scientific Research Instrument Projects(Grant No.61727804)the Natural Science Foundation of Shaanxi Province,China(Grant No.2022-JM-386)。
文摘Influences of off-state overdrive stress on the fluorine-plasma treated AlGaN/GaN high-electronic mobility transistors(HEMTs)are experimentally investigated.It is observed that the reverse leakage current between the gate and source decreases after the off-state stress,whereas the current between the gate and drain increases.By analyzing those changes of the reverse currents based on the Frenkel–Poole model,we realize that the ionization of fluorine ions occurs during the off-state stress.Furthermore,threshold voltage degradation is also observed after the off-state stress,but the degradations of AlGaN/GaN HEMTs treated with different F-plasma RF powers are different.By comparing the differences between those devices,we find that the F-ions incorporated in the GaN buffer layer play an important role in averting degradation.Lastly,suggestions to obtain a more stable fluorine-plasma treated AlGaN/GaN HEMT are put forwarded.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CB301900 and 2011CB922100the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In many critical civil and emerging military applications, low-level UV detection, sometimes at single photon level, is highly desired. In this work, a mesa-type 4H-SiC UV avalanche photodiode (APD) is designed and fabricated, which exhibits low leakage current and high avalanche gain. When studied by using a passive quenching circuit, the APD exhibits self-quenching characteristics due to its high differential resistance in the avalanche region. The single photon detection efficiency and dark count rate of the APD are evaluated as functions of discrimination voltage and over-drive voltage. The optimized operation conditions of the single photon counting APD are discussed.