The homogenous Poisson process is often used to describe the event arrivals. Such Poisson process has been applied in various areas. This study focuses on the arrival pattern of storm water overflows. A set of overflo...The homogenous Poisson process is often used to describe the event arrivals. Such Poisson process has been applied in various areas. This study focuses on the arrival pattern of storm water overflows. A set of overflow data was obtained from the storm water pipeline of a municipality. The aim is to verify the overflow arrival pattern and check whether the Poisson process can be applied. The adopted method is the analysis over the inter-arrival times. The exponential distribution test is conducted on the annual data set as well as the entire data set. The results show that all data sets follow the exponential distribution. With the verification of Poisson process, specific examples are also given to show how the Poisson process properties can be used in the management of storm water pipeline management. For other data that are featured with various heterogeneities, the homogenous Poisson process might not be able to be verified and used. Under such circumstances, non-homogenous survival model can be used to simulate the arrival process.展开更多
Data obtained on hydrography and currents in meridional sections in the Gulf of Aqaba and the Red Sea in November 2013 and March 2015 were used to determine the extent of contribution of Gulf of Aqaba Water(GAW)to the...Data obtained on hydrography and currents in meridional sections in the Gulf of Aqaba and the Red Sea in November 2013 and March 2015 were used to determine the extent of contribution of Gulf of Aqaba Water(GAW)to the formation of Red Sea waters.The southward flow across the Strait of Tiran was^0.02 Sv in both periods which is direct evidence of significant contribution of GAW to Red Sea waters in autumn-winter.A multiple tracer analysis using temperature,salinity,and dissolved oxygen showed that the GAW,on entry into Red Sea,bifurcates into two branches.The upper branch exiting the Strait in the depth range 150-220 m has densities between 28.3 and 28.5,continues to flow at the same depths,and feeds the Red Sea Overflow Water(RSOW).The lower branch that exits between 220 and 250 m above the sill cascades down its southern face,mixes with northward recirculating branch of Red Sea Deep Water(RSDW)and sinks to the bottom and forms part of southward-flowing RSDW.Contribution of GAW to northern Red Sea waters below 100 m depth was 36±0.4%in November 2013 and 42.1±5.4%in March 2015.GAW is traceable down to 17-19°N in RSDW and RSOW.Volume contribution of GAW to RSOW was 9.6*1012 m3,about 50%higher than that for RSDW(6*1012 m3).Analyses of the data from R.V.Maurice Ewing cruise in 2001 gave similar results and lend support for these deductions.展开更多
Water chemistry and its impact on mineral processing operations are not well understood and often not adequately monitored. CanmetMINING, as part of its water management research program, has been involved in a projec...Water chemistry and its impact on mineral processing operations are not well understood and often not adequately monitored. CanmetMINING, as part of its water management research program, has been involved in a project initiated to identify opportunities for improving water recovery, water treatment, and recycling in the mining and mineral processing operations. One of the main objectives of this work is to evaluate and assess water chemistry and identify factors that impact mineral recovery, concentrate grade, and metal extraction efficiencies in order to understand and mitigate negative impacts of water recycling and improve process efficiency. In collaboration with a North American concentrator, CanmetMINING has been involved in assessing the water chemistry in the mill and evaluating water recycling options for select process streams to reduce fresh water intake and maximize recycling. The overall goal of the project is to investigate options for water recycling (increase the thickener overflow recirculation from thickener overflow tank) without affecting nickel and copper metallurgy. The results of the sampling campaigns showed that the water chemistry of the streams was fairly consistent throughout the year with no significant seasonal variations. The laboratory tests illustrated that when higher quantities of thickener overflow from thickener overflow were used, the nickel + copper grade versus nickel recovery curves shifted towards lower values. These observations were observed for the plant water samples obtained in April, June and August 2019.展开更多
Water trapped in glaciers and in lakes impounded by landforms created by glaciers (glacial lakes) are an important component of the hydrology and water resources in high mountain areas of Central Asia. Changes in mode...Water trapped in glaciers and in lakes impounded by landforms created by glaciers (glacial lakes) are an important component of the hydrology and water resources in high mountain areas of Central Asia. Changes in modern glaciers and glacial lakes are an important component of the hydrology of watersheds in the Mongolian Altai and Khuvsgul Mountain Ranges, western and northern Mongolia, respectively. Here we focus on Mt. Ikh Turgen and Mt. Munkh Saridag, isolated mountains of the Mongolian Altai and Khuvsgul Mountain Ranges, respectively. We use remote sensing to track changes in modern glaciers over time with mapping at scales of 1:200,000 for Mt. Ikh Turgen and 1:90,000 for Mt. Munkh Saridag based on imagery from Google Earth, 30 m resolution Aster Digital Elevation Model (DEM) and 30 m resolution Landsat 5 TM. Mt. Ikh Turgen lost 45.6% of its total glacier area between 1970 (41.4 km2) and 2011 (18.9 km2) and the Equilibrium Line Altitude (ELA) of the glaciers increased in elevation by 98 m and 144 m on north and south aspects, respectively. Mt. Munkh Saridag lost 57.3% of its total glacier area between 1970 (901 m2) and 2007 (381 m2) and the local ELA rose by 47 m and 80 m on north and south aspects, respectively. These mountains are located at similar latitudes, and so the greater percentage loss of glacier area in Mt. Munkh Saridag and faster changes in ELAs in Mt. Ikh Turgen may reflect variations in elevation and aspect, duration of solar radiation, and vulnerability to solar radiation, as well as variations in glacier scale. This study demonstrates the importance of spatial analyses of modern glaciers in understanding the context of hydrological changes within which any sustainable water resource management plan must be situated.展开更多
文摘The homogenous Poisson process is often used to describe the event arrivals. Such Poisson process has been applied in various areas. This study focuses on the arrival pattern of storm water overflows. A set of overflow data was obtained from the storm water pipeline of a municipality. The aim is to verify the overflow arrival pattern and check whether the Poisson process can be applied. The adopted method is the analysis over the inter-arrival times. The exponential distribution test is conducted on the annual data set as well as the entire data set. The results show that all data sets follow the exponential distribution. With the verification of Poisson process, specific examples are also given to show how the Poisson process properties can be used in the management of storm water pipeline management. For other data that are featured with various heterogeneities, the homogenous Poisson process might not be able to be verified and used. Under such circumstances, non-homogenous survival model can be used to simulate the arrival process.
文摘Data obtained on hydrography and currents in meridional sections in the Gulf of Aqaba and the Red Sea in November 2013 and March 2015 were used to determine the extent of contribution of Gulf of Aqaba Water(GAW)to the formation of Red Sea waters.The southward flow across the Strait of Tiran was^0.02 Sv in both periods which is direct evidence of significant contribution of GAW to Red Sea waters in autumn-winter.A multiple tracer analysis using temperature,salinity,and dissolved oxygen showed that the GAW,on entry into Red Sea,bifurcates into two branches.The upper branch exiting the Strait in the depth range 150-220 m has densities between 28.3 and 28.5,continues to flow at the same depths,and feeds the Red Sea Overflow Water(RSOW).The lower branch that exits between 220 and 250 m above the sill cascades down its southern face,mixes with northward recirculating branch of Red Sea Deep Water(RSDW)and sinks to the bottom and forms part of southward-flowing RSDW.Contribution of GAW to northern Red Sea waters below 100 m depth was 36±0.4%in November 2013 and 42.1±5.4%in March 2015.GAW is traceable down to 17-19°N in RSDW and RSOW.Volume contribution of GAW to RSOW was 9.6*1012 m3,about 50%higher than that for RSDW(6*1012 m3).Analyses of the data from R.V.Maurice Ewing cruise in 2001 gave similar results and lend support for these deductions.
文摘Water chemistry and its impact on mineral processing operations are not well understood and often not adequately monitored. CanmetMINING, as part of its water management research program, has been involved in a project initiated to identify opportunities for improving water recovery, water treatment, and recycling in the mining and mineral processing operations. One of the main objectives of this work is to evaluate and assess water chemistry and identify factors that impact mineral recovery, concentrate grade, and metal extraction efficiencies in order to understand and mitigate negative impacts of water recycling and improve process efficiency. In collaboration with a North American concentrator, CanmetMINING has been involved in assessing the water chemistry in the mill and evaluating water recycling options for select process streams to reduce fresh water intake and maximize recycling. The overall goal of the project is to investigate options for water recycling (increase the thickener overflow recirculation from thickener overflow tank) without affecting nickel and copper metallurgy. The results of the sampling campaigns showed that the water chemistry of the streams was fairly consistent throughout the year with no significant seasonal variations. The laboratory tests illustrated that when higher quantities of thickener overflow from thickener overflow were used, the nickel + copper grade versus nickel recovery curves shifted towards lower values. These observations were observed for the plant water samples obtained in April, June and August 2019.
文摘Water trapped in glaciers and in lakes impounded by landforms created by glaciers (glacial lakes) are an important component of the hydrology and water resources in high mountain areas of Central Asia. Changes in modern glaciers and glacial lakes are an important component of the hydrology of watersheds in the Mongolian Altai and Khuvsgul Mountain Ranges, western and northern Mongolia, respectively. Here we focus on Mt. Ikh Turgen and Mt. Munkh Saridag, isolated mountains of the Mongolian Altai and Khuvsgul Mountain Ranges, respectively. We use remote sensing to track changes in modern glaciers over time with mapping at scales of 1:200,000 for Mt. Ikh Turgen and 1:90,000 for Mt. Munkh Saridag based on imagery from Google Earth, 30 m resolution Aster Digital Elevation Model (DEM) and 30 m resolution Landsat 5 TM. Mt. Ikh Turgen lost 45.6% of its total glacier area between 1970 (41.4 km2) and 2011 (18.9 km2) and the Equilibrium Line Altitude (ELA) of the glaciers increased in elevation by 98 m and 144 m on north and south aspects, respectively. Mt. Munkh Saridag lost 57.3% of its total glacier area between 1970 (901 m2) and 2007 (381 m2) and the local ELA rose by 47 m and 80 m on north and south aspects, respectively. These mountains are located at similar latitudes, and so the greater percentage loss of glacier area in Mt. Munkh Saridag and faster changes in ELAs in Mt. Ikh Turgen may reflect variations in elevation and aspect, duration of solar radiation, and vulnerability to solar radiation, as well as variations in glacier scale. This study demonstrates the importance of spatial analyses of modern glaciers in understanding the context of hydrological changes within which any sustainable water resource management plan must be situated.