Electrical power transmission is dominated by overhead line systems at present.This is mainly based on more than hundred years of experience of utilities in running overhead lines.Furthermore,overhead lines have prove...Electrical power transmission is dominated by overhead line systems at present.This is mainly based on more than hundred years of experience of utilities in running overhead lines.Furthermore,overhead lines have proven their operational reliability and functional assurance.In the past,cables were used in distribution networks in urban areas for the most part with the exception of direct current submarine cables.New developments of high voltage XLPE cables make it possible to use this technology for EHV level applications in transmission networks.Within this paper,mixed network configurations,consisting of overhead lines and high voltage cables,are investigated.An exemplary EHV transmission line with a total length of about 100 km,which is quite typical for Central Europe,has been studied.Several different line combinations are discussed with varied rates between overhead line sections and cable sections length in practice.The length of the cable sections are ranging from several kilometers up to lengths of 100 km.In this paper the work focuses on the transient behavior of combined 400 kV overhead and cable lines during switching processes and lightning impacts.A number of calculations were carried out to get an overview of the transient stress in numerous network nodes along the transmission system.Numerical programs like ATP/EMTP have been used for these simulations.Peak values and wave shapes of the transient voltage stress have been evaluated,based on different systems and within possible combinations.In respect of the insulation coordination and transient stress at network nodes,the voltage-time trends are also analyzed.The combination of high voltage overhead and cable transmission systems,especially such with lengths of more than about 50 km,are making tightened and extended demands to the network design,to the operational management and of course to the network protection also.As an output of this investigations,the results might influence the strategy in running this new type of combined transmission systems.展开更多
Techniques of artificially-triggered lightning have provided a significantly useful means to directly measure various physical parameters of lightning discharge and to conduct research on protection methods of lightni...Techniques of artificially-triggered lightning have provided a significantly useful means to directly measure various physical parameters of lightning discharge and to conduct research on protection methods of lightning electromagnetic pulses.In this study,using capacitive and resistive dividers,current probes and optical fiber transmission devices,we measured and analyzed the induced overvoltage on the overhead transmission line and the overcurrent through Surge Protective Devices(SPD) when a lightning discharge was artificially triggered nearby on August 12,2008 at Conghua Field Lightning Experiment Site.The triggered lightning discharge contained an initial current stage and eight return strokes whose peak currents ranged from 6.6kA to 26.4kA.We found that overcurrents through SPD were induced on the power line both during the initial continuous current stage and the return stroke processes.During the return strokes,the residual voltage and the current through the SPD lasted up to the ms(millisecond) range,and the overcurrents exhibited a mean waveform up to 22/69μs with a peak value of less than 2kA.Based on the observed data,simple calculations show that the corresponding single discharge energy was much greater than the values of the high voltage pulse generators commonly used in the experiments regulated for SPD.The SPD discharge current peak was not synchronous to that of the residual voltage with the former obviously lagging behind the latter.The SPD discharge current peak was well correlated with the triggered lightning current peak and the wave-front current gradient.The long duration of the SPD current is one of the major reasons why the SPD was damaged even with a big nominal discharge current.展开更多
Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km.h: to 400 km.h-1. Among these technologies, this paper introduces the 400 km-h-1 class curren...Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km.h: to 400 km.h-1. Among these technologies, this paper introduces the 400 km-h-1 class current collection performance evaluation methods that have been developed and demonstrated by Korea. Specifically, this paper reports details of the video-based monitoring techniques that have been adopted to inspect the stability of overhead contact line (OCL) components at 400 km.h-1 without direct contact with any components of the power supply system. Unlike conventional OCL monitoring systems, which detect contact wire positions using either laser sensors or line cameras, the developed system measures parameters in the active state by video data. According to experimental results that were obtained at a field-test site established at a commercial line, it is claimed that the proposed mea- surement system is capable of effectively measuring OCL parameters.展开更多
In power systems, a large number of OPLs (overhead power lines) are more than 40 years old and some even exceed 50 years old. The key issue for power systems managers, public utilities companies and electrical engin...In power systems, a large number of OPLs (overhead power lines) are more than 40 years old and some even exceed 50 years old. The key issue for power systems managers, public utilities companies and electrical engineers today concerns the manner in which available financial resources should be invested in these OPLs to provide the greatest impact on the power system as a whole and to address the OPLs that require urgent revitalization. This paper presents the application of the software tool RevOPL, developed using Microsoft Access utilizing the "methodology for revitalization of high-voltage OPLs". The aim is to present both the methodology and software to objectively evaluate the condition of an OPL and determine its remaining service life. The application of this software tool provides a proposal for the scheduling and scope of planned revitalization activities, which are obtained through the optimization of the technical characteristics while remaining within the available budget.展开更多
In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based o...In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based on equipment operating status, utility theory and fuzzy theory. In this model, the proper membership function is adopted to describe the influence of lightning, wind speed, line ice and temperature, and the outage rate of overhead line, derived from historical statistics, is amended. Based on this model, the power supply risk analysis software is developed to calculate the online risk indicators of district grid, and provide real-time decision support information based on risk theory for scheduling operations personnel.展开更多
This paper considers the influence of changes of the transmission lines of permissible load current depending on conductor and ambient temperatures, climate conditions. The theoretical background of the allowable cond...This paper considers the influence of changes of the transmission lines of permissible load current depending on conductor and ambient temperatures, climate conditions. The theoretical background of the allowable conductor temperature as well as load current determination principles are proposed. On one hand, the principles are based on mechanical limitations; on the other hand, they are based on thermal limitations. The simulation tasks were based on specific data information of three existing overhead lines of Latvian power system as well as the planned 330 kV overhead line. Moreover, the special thermovision device was used for precious determination of conductor temperature of the existing transmission lines. The simulation results of the obtained data are reviewed in the paper.展开更多
The UHVAC 1 000-kV transmission system is so far the one with the most advanced transmission technique applied and highest operation voltage.There are no guidelines or standards available for the design of 1 000-kV ov...The UHVAC 1 000-kV transmission system is so far the one with the most advanced transmission technique applied and highest operation voltage.There are no guidelines or standards available for the design of 1 000-kV overhead transmission line in China.Study on key technologies and design schemes shall be carried out to ascertain the technical principles and construction standards for project construction,which are presented in this paper based on the Southeast Shanxi-Nanyang-Jingmen test and demonstration transmission line.A comparison and analysis of technical data and economic indices between UHV line and other lines are also described.展开更多
Significant investments have been made regarding the construction of a great number of high-voltage overhead power lines of all voltage levels, and now the questions arise on where and how to direct the investments ne...Significant investments have been made regarding the construction of a great number of high-voltage overhead power lines of all voltage levels, and now the questions arise on where and how to direct the investments necessary for the maintenance of overhead power lines. To organise the process of maintenance of overhead power lines correctly, it is necessary to have the current information on the condition of particular components of a line. In this paper, special attention has been paid to the real condition of overhead power lines, with the aim of making the decision whether some of the following measures are necessary, and to what extent: the revitalisation for a certain number of years is perceived, the revitalisation up to five years and reconstruction of the overhead power line is performed, its restoration is performed or nothing is done. The approach to the perceiving of real condition of high-voltage overhead power lines is presented on a global block diagram. With the aim of setting out the list of priorities for revitalisation, the criteria have been defined with regards to the real condition of particular components of an overhead power line, as well as pursuant to the role and importance in an electric power system. The correctly defined criteria contribute to the solving of the problem of making a single list of priorities for the revitalisation of high-voltage overhead power lines. In that way, the recommendations are being given to the transmission companies, to achieve a higher reliability of an electric power system, with a minimum number of cancellations and a maximum extension of working life of all the components of overhead power lines. A correct maintenance of overhead power lines brings large financial savings to the owners of transmission companies, and that is the primary goal in a deregulated environment.展开更多
In order to ensure that the off-line arm of a two-arm-wheel combined inspection robot can reliably grasp the line in case of autonomous obstacle crossing,a control method is proposed for line grasping based on hand-ey...In order to ensure that the off-line arm of a two-arm-wheel combined inspection robot can reliably grasp the line in case of autonomous obstacle crossing,a control method is proposed for line grasping based on hand-eye visual servo.On the basis of the transmission line's geometrical characteristics and the camera's imaging principle,a line recognition and extraction method based on structure constraint is designed.The line's intercept and inclination are defined in an imaging space to represent the robot's change of pose and a law governing the pose decoupling servo control is developed.Under the integrated consideration of the influence of light intensity and background change,noise(from the camera itself and electromagnetic field)as well as the robot's kinetic inertia on the robot's imaging quality in the course of motion and the grasping control precision,a servo controller for grasping the line of the robot's off-line arm is designed with the method of fuzzy control.An experiment is conducted on a 1:1 simulation line using an inspection robot and the robot is put into on-line operation on a real overhead transmission line,where the robot can grasp the line within 18 s in the case of autonomous obstacle-crossing.The robot's autonomous line-grasping function is realized without manual intervention and the robot can grasp the line in a precise,reliable and efficient manner,thus the need of actual operation can be satisfied.展开更多
In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based o...In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based on equipment operating status, utility theory and fuzzy theory. In this model, the proper membership function is adopted to describe the influence of lightning, wind speed, line ice and temperature, and the outage rate of overhead line, derived from historical statistics, is amended. Based on this model, the power supply risk analysis software is developed to calculate the online risk indicators of district grid, and provide real-time decision support information based on risk theory for scheduling operations personnel.展开更多
文摘Electrical power transmission is dominated by overhead line systems at present.This is mainly based on more than hundred years of experience of utilities in running overhead lines.Furthermore,overhead lines have proven their operational reliability and functional assurance.In the past,cables were used in distribution networks in urban areas for the most part with the exception of direct current submarine cables.New developments of high voltage XLPE cables make it possible to use this technology for EHV level applications in transmission networks.Within this paper,mixed network configurations,consisting of overhead lines and high voltage cables,are investigated.An exemplary EHV transmission line with a total length of about 100 km,which is quite typical for Central Europe,has been studied.Several different line combinations are discussed with varied rates between overhead line sections and cable sections length in practice.The length of the cable sections are ranging from several kilometers up to lengths of 100 km.In this paper the work focuses on the transient behavior of combined 400 kV overhead and cable lines during switching processes and lightning impacts.A number of calculations were carried out to get an overview of the transient stress in numerous network nodes along the transmission system.Numerical programs like ATP/EMTP have been used for these simulations.Peak values and wave shapes of the transient voltage stress have been evaluated,based on different systems and within possible combinations.In respect of the insulation coordination and transient stress at network nodes,the voltage-time trends are also analyzed.The combination of high voltage overhead and cable transmission systems,especially such with lengths of more than about 50 km,are making tightened and extended demands to the network design,to the operational management and of course to the network protection also.As an output of this investigations,the results might influence the strategy in running this new type of combined transmission systems.
基金A key project of China Meteorological Administration (CMATG2008Z07)Specialized Science Project for Public Welfare Industries (GYHY2007622)Key Science Project of the Guangzhou Regional Meteorological Center (GRMC2007B03)
文摘Techniques of artificially-triggered lightning have provided a significantly useful means to directly measure various physical parameters of lightning discharge and to conduct research on protection methods of lightning electromagnetic pulses.In this study,using capacitive and resistive dividers,current probes and optical fiber transmission devices,we measured and analyzed the induced overvoltage on the overhead transmission line and the overcurrent through Surge Protective Devices(SPD) when a lightning discharge was artificially triggered nearby on August 12,2008 at Conghua Field Lightning Experiment Site.The triggered lightning discharge contained an initial current stage and eight return strokes whose peak currents ranged from 6.6kA to 26.4kA.We found that overcurrents through SPD were induced on the power line both during the initial continuous current stage and the return stroke processes.During the return strokes,the residual voltage and the current through the SPD lasted up to the ms(millisecond) range,and the overcurrents exhibited a mean waveform up to 22/69μs with a peak value of less than 2kA.Based on the observed data,simple calculations show that the corresponding single discharge energy was much greater than the values of the high voltage pulse generators commonly used in the experiments regulated for SPD.The SPD discharge current peak was not synchronous to that of the residual voltage with the former obviously lagging behind the latter.The SPD discharge current peak was well correlated with the triggered lightning current peak and the wave-front current gradient.The long duration of the SPD current is one of the major reasons why the SPD was damaged even with a big nominal discharge current.
文摘Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km.h: to 400 km.h-1. Among these technologies, this paper introduces the 400 km-h-1 class current collection performance evaluation methods that have been developed and demonstrated by Korea. Specifically, this paper reports details of the video-based monitoring techniques that have been adopted to inspect the stability of overhead contact line (OCL) components at 400 km.h-1 without direct contact with any components of the power supply system. Unlike conventional OCL monitoring systems, which detect contact wire positions using either laser sensors or line cameras, the developed system measures parameters in the active state by video data. According to experimental results that were obtained at a field-test site established at a commercial line, it is claimed that the proposed mea- surement system is capable of effectively measuring OCL parameters.
文摘In power systems, a large number of OPLs (overhead power lines) are more than 40 years old and some even exceed 50 years old. The key issue for power systems managers, public utilities companies and electrical engineers today concerns the manner in which available financial resources should be invested in these OPLs to provide the greatest impact on the power system as a whole and to address the OPLs that require urgent revitalization. This paper presents the application of the software tool RevOPL, developed using Microsoft Access utilizing the "methodology for revitalization of high-voltage OPLs". The aim is to present both the methodology and software to objectively evaluate the condition of an OPL and determine its remaining service life. The application of this software tool provides a proposal for the scheduling and scope of planned revitalization activities, which are obtained through the optimization of the technical characteristics while remaining within the available budget.
文摘In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based on equipment operating status, utility theory and fuzzy theory. In this model, the proper membership function is adopted to describe the influence of lightning, wind speed, line ice and temperature, and the outage rate of overhead line, derived from historical statistics, is amended. Based on this model, the power supply risk analysis software is developed to calculate the online risk indicators of district grid, and provide real-time decision support information based on risk theory for scheduling operations personnel.
文摘This paper considers the influence of changes of the transmission lines of permissible load current depending on conductor and ambient temperatures, climate conditions. The theoretical background of the allowable conductor temperature as well as load current determination principles are proposed. On one hand, the principles are based on mechanical limitations; on the other hand, they are based on thermal limitations. The simulation tasks were based on specific data information of three existing overhead lines of Latvian power system as well as the planned 330 kV overhead line. Moreover, the special thermovision device was used for precious determination of conductor temperature of the existing transmission lines. The simulation results of the obtained data are reviewed in the paper.
文摘The UHVAC 1 000-kV transmission system is so far the one with the most advanced transmission technique applied and highest operation voltage.There are no guidelines or standards available for the design of 1 000-kV overhead transmission line in China.Study on key technologies and design schemes shall be carried out to ascertain the technical principles and construction standards for project construction,which are presented in this paper based on the Southeast Shanxi-Nanyang-Jingmen test and demonstration transmission line.A comparison and analysis of technical data and economic indices between UHV line and other lines are also described.
文摘Significant investments have been made regarding the construction of a great number of high-voltage overhead power lines of all voltage levels, and now the questions arise on where and how to direct the investments necessary for the maintenance of overhead power lines. To organise the process of maintenance of overhead power lines correctly, it is necessary to have the current information on the condition of particular components of a line. In this paper, special attention has been paid to the real condition of overhead power lines, with the aim of making the decision whether some of the following measures are necessary, and to what extent: the revitalisation for a certain number of years is perceived, the revitalisation up to five years and reconstruction of the overhead power line is performed, its restoration is performed or nothing is done. The approach to the perceiving of real condition of high-voltage overhead power lines is presented on a global block diagram. With the aim of setting out the list of priorities for revitalisation, the criteria have been defined with regards to the real condition of particular components of an overhead power line, as well as pursuant to the role and importance in an electric power system. The correctly defined criteria contribute to the solving of the problem of making a single list of priorities for the revitalisation of high-voltage overhead power lines. In that way, the recommendations are being given to the transmission companies, to achieve a higher reliability of an electric power system, with a minimum number of cancellations and a maximum extension of working life of all the components of overhead power lines. A correct maintenance of overhead power lines brings large financial savings to the owners of transmission companies, and that is the primary goal in a deregulated environment.
基金Project(2006AA04Z202)supported by the National High Technology Research and Development Program of ChinaProject(51105281)supported by the National Natural Science Foundation of China
文摘In order to ensure that the off-line arm of a two-arm-wheel combined inspection robot can reliably grasp the line in case of autonomous obstacle crossing,a control method is proposed for line grasping based on hand-eye visual servo.On the basis of the transmission line's geometrical characteristics and the camera's imaging principle,a line recognition and extraction method based on structure constraint is designed.The line's intercept and inclination are defined in an imaging space to represent the robot's change of pose and a law governing the pose decoupling servo control is developed.Under the integrated consideration of the influence of light intensity and background change,noise(from the camera itself and electromagnetic field)as well as the robot's kinetic inertia on the robot's imaging quality in the course of motion and the grasping control precision,a servo controller for grasping the line of the robot's off-line arm is designed with the method of fuzzy control.An experiment is conducted on a 1:1 simulation line using an inspection robot and the robot is put into on-line operation on a real overhead transmission line,where the robot can grasp the line within 18 s in the case of autonomous obstacle-crossing.The robot's autonomous line-grasping function is realized without manual intervention and the robot can grasp the line in a precise,reliable and efficient manner,thus the need of actual operation can be satisfied.
文摘In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based on equipment operating status, utility theory and fuzzy theory. In this model, the proper membership function is adopted to describe the influence of lightning, wind speed, line ice and temperature, and the outage rate of overhead line, derived from historical statistics, is amended. Based on this model, the power supply risk analysis software is developed to calculate the online risk indicators of district grid, and provide real-time decision support information based on risk theory for scheduling operations personnel.