Overlapping community detection in a network is a challenging issue which attracts lots of attention in recent years.A notion of hesitant node(HN) is proposed. An HN contacts with multiple communities while the comm...Overlapping community detection in a network is a challenging issue which attracts lots of attention in recent years.A notion of hesitant node(HN) is proposed. An HN contacts with multiple communities while the communications are not strong or even accidental, thus the HN holds an implicit community structure.However, HNs are not rare in the real world network. It is important to identify them because they can be efficient hubs which form the overlapping portions of communities or simple attached nodes to some communities. Current approaches have difficulties in identifying and clustering HNs. A density-based rough set model(DBRSM) is proposed by combining the virtue of densitybased algorithms and rough set models. It incorporates the macro perspective of the community structure of the whole network and the micro perspective of the local information held by HNs, which would facilitate the further "growth" of HNs in community. We offer a theoretical support for this model from the point of strength of the trust path. The experiments on the real-world and synthetic datasets show the practical significance of analyzing and clustering the HNs based on DBRSM. Besides, the clustering based on DBRSM promotes the modularity optimization.展开更多
Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network. In this paper, we propose an effective and efficient algorithm, called Dominant Label Prop...Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network. In this paper, we propose an effective and efficient algorithm, called Dominant Label Propagation Algorithm(Abbreviated as DLPA), to detect communities in complex networks. The algorithm simulates a special voting process to detect overlapping and non-overlapping community structure in complex networks simultaneously. Our algorithm is very efficient, since its computational complexity is almost linear to the number of edges in the network. Experimental results on both real-world and synthetic networks show that our algorithm also possesses high accuracies on detecting community structure in networks.展开更多
In this paper, we propose a balanced multi-label propagation algorithm (BMLPA) for overlapping community detection in social networks. As well as its fast speed, another important advantage of our method is good sta...In this paper, we propose a balanced multi-label propagation algorithm (BMLPA) for overlapping community detection in social networks. As well as its fast speed, another important advantage of our method is good stability, which other multi-label propagation algorithms, such as COPRA, lack. In BMLPA, we propose a new update strategy, which requires that community identifiers of one vertex should have balanced belonging coefficients. The advantage of this strategy is that it allows vertices to belong to any number of communities without a global limit on the largest number of community memberships, which is needed for COPRA. Also, we propose a fast method to generate "rough cores", which can be used to initialize labels for multi-label propagation algorithms, and are able to improve the quality and stability of results. Experimental results on synthetic and real social networks show that BMLPA is very efficient and effective for uncovering overlapping communities.展开更多
Overlapping community detection has become a very hot research topic in recent decades,and a plethora of methods have been proposed.But,a common challenge in many existing overlapping community detection approaches is...Overlapping community detection has become a very hot research topic in recent decades,and a plethora of methods have been proposed.But,a common challenge in many existing overlapping community detection approaches is that the number of communities K must be predefined manually.We propose a flexible nonparametric Bayesian generative model for count-value networks,which can allow K to increase as more and more data are encountered instead of to be fixed in advance.The Indian buffet process was used to model the community assignment matrix Z,and an uncol-lapsed Gibbs sampler has been derived.However,as the community assignment matrix Zis a structured multi-variable parameter,how to summarize the posterior inference results andestimate the inference quality about Z,is still a considerable challenge in the literature.In this paper,a graph convolutional neural network based graph classifier was utilized to help tosummarize the results and to estimate the inference qualityabout Z.We conduct extensive experiments on synthetic data and real data,and find that empirically,the traditional posterior summarization strategy is reliable.展开更多
Recently, complex networks have attracted considerable research attention. Community detection is an important problem in the field of complex networks and is useful in a variety of applications such as information pr...Recently, complex networks have attracted considerable research attention. Community detection is an important problem in the field of complex networks and is useful in a variety of applications such as information propagation, link prediction, recommendation, and marketing. In this study, we focus on discovering overlapping community structures by using link partitions. We propose a Latent Dirichlet Allocation (LDA)-Based Link Partition (LBLP) method, which can find communities with an adjustable range of overlapping. This method employs the LDA model to detect link partitions, which can calculate the community belonging factor for each link. On the basis of this factor, link partitions with bridge links can be found efficiently. We validate the effectiveness of the proposed solution by using both real-world and synthesized networks. The experimental results demonstrate that the approach can find a meaningful and relevant link community structure.展开更多
基金supported by the National Natural Science Foundation of China(71271018)
文摘Overlapping community detection in a network is a challenging issue which attracts lots of attention in recent years.A notion of hesitant node(HN) is proposed. An HN contacts with multiple communities while the communications are not strong or even accidental, thus the HN holds an implicit community structure.However, HNs are not rare in the real world network. It is important to identify them because they can be efficient hubs which form the overlapping portions of communities or simple attached nodes to some communities. Current approaches have difficulties in identifying and clustering HNs. A density-based rough set model(DBRSM) is proposed by combining the virtue of densitybased algorithms and rough set models. It incorporates the macro perspective of the community structure of the whole network and the micro perspective of the local information held by HNs, which would facilitate the further "growth" of HNs in community. We offer a theoretical support for this model from the point of strength of the trust path. The experiments on the real-world and synthetic datasets show the practical significance of analyzing and clustering the HNs based on DBRSM. Besides, the clustering based on DBRSM promotes the modularity optimization.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61173093 and 61202182)the Postdoctoral Science Foundation of China(Grant No.2012 M521776)+2 种基金the Fundamental Research Funds for the Central Universities of Chinathe Postdoctoral Science Foundation of Shannxi Province,Chinathe Natural Science Basic Research Plan of Shaanxi Province,China(Grant Nos.2013JM8019 and 2014JQ8359)
文摘Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network. In this paper, we propose an effective and efficient algorithm, called Dominant Label Propagation Algorithm(Abbreviated as DLPA), to detect communities in complex networks. The algorithm simulates a special voting process to detect overlapping and non-overlapping community structure in complex networks simultaneously. Our algorithm is very efficient, since its computational complexity is almost linear to the number of edges in the network. Experimental results on both real-world and synthetic networks show that our algorithm also possesses high accuracies on detecting community structure in networks.
基金supported by the Fundamental Research Funds for the Central Universities of Chinathe National Natural Science Foundation of China under Grant No. 60905029the Natural Science Foundation of Beijing of China under Grant No. 4112046
文摘In this paper, we propose a balanced multi-label propagation algorithm (BMLPA) for overlapping community detection in social networks. As well as its fast speed, another important advantage of our method is good stability, which other multi-label propagation algorithms, such as COPRA, lack. In BMLPA, we propose a new update strategy, which requires that community identifiers of one vertex should have balanced belonging coefficients. The advantage of this strategy is that it allows vertices to belong to any number of communities without a global limit on the largest number of community memberships, which is needed for COPRA. Also, we propose a fast method to generate "rough cores", which can be used to initialize labels for multi-label propagation algorithms, and are able to improve the quality and stability of results. Experimental results on synthetic and real social networks show that BMLPA is very efficient and effective for uncovering overlapping communities.
基金supported by the National Basic Research Program of China(973)(2012CB316402)The National Natural Science Foundation of China(Grant Nos.61332005,61725205)+3 种基金The Research Project of the North Minzu University(2019XYZJK02,2019xYZJK05,2017KJ24,2017KJ25,2019MS002)Ningxia first-classdisciplinc and scientific research projects(electronic science and technology,NXYLXK2017A07)NingXia Provincial Key Discipline Project-Computer ApplicationThe Provincial Natural Science Foundation ofNingXia(NZ17111,2020AAC03219).
文摘Overlapping community detection has become a very hot research topic in recent decades,and a plethora of methods have been proposed.But,a common challenge in many existing overlapping community detection approaches is that the number of communities K must be predefined manually.We propose a flexible nonparametric Bayesian generative model for count-value networks,which can allow K to increase as more and more data are encountered instead of to be fixed in advance.The Indian buffet process was used to model the community assignment matrix Z,and an uncol-lapsed Gibbs sampler has been derived.However,as the community assignment matrix Zis a structured multi-variable parameter,how to summarize the posterior inference results andestimate the inference quality about Z,is still a considerable challenge in the literature.In this paper,a graph convolutional neural network based graph classifier was utilized to help tosummarize the results and to estimate the inference qualityabout Z.We conduct extensive experiments on synthetic data and real data,and find that empirically,the traditional posterior summarization strategy is reliable.
基金the National Key Basic Research and Department (973) Program of China(No. 2013CB329603)the National Natural Science Foundation of China (Nos. 61074128 and 71231002)
文摘Recently, complex networks have attracted considerable research attention. Community detection is an important problem in the field of complex networks and is useful in a variety of applications such as information propagation, link prediction, recommendation, and marketing. In this study, we focus on discovering overlapping community structures by using link partitions. We propose a Latent Dirichlet Allocation (LDA)-Based Link Partition (LBLP) method, which can find communities with an adjustable range of overlapping. This method employs the LDA model to detect link partitions, which can calculate the community belonging factor for each link. On the basis of this factor, link partitions with bridge links can be found efficiently. We validate the effectiveness of the proposed solution by using both real-world and synthesized networks. The experimental results demonstrate that the approach can find a meaningful and relevant link community structure.