A correlation overlapping partial transmit sequence(C-OPTS) algorithm is proposed to solve the issue of high complexity of overlapping partial transmit sequence(OPTS) algorithm in suppressing the peak to average power...A correlation overlapping partial transmit sequence(C-OPTS) algorithm is proposed to solve the issue of high complexity of overlapping partial transmit sequence(OPTS) algorithm in suppressing the peak to average power ratio(PAPR) of filter bank multicarrier-offset quadrature amplitude modulation(FBMC-OQAM) signals.The V subblocks in partial transmit sequence(PTS) are regrouped into U combinations according to the correlation coefficient p,and overlapping subblocks are allowed between adjacent groups.The search starts from the first group and sets the phase factors of the subsequent groups to 1.When the phase factors of the non-overlapping subblocks in the first group are determined,the subsequent groups are searched in turn to determine their respective phase factors.Starting from the second data block,the data overlapped with it should be taken into account when determining its optimal phase factor vector.Theoretical analysis and simulation results indicate that compared with the OPTS algorithm,the proposed algorithm can significantly reduce the computational complexity at the cost of slight deterioration of PAPR performance.Meanwhile,compared with the even-odd iterative double-layers OPTS(ID-OPTS) algorithm,it can further reduce the complexity and obtain a better PAPR suppression effect.展开更多
The recent breakthroughs in next-generation sequencing technologies, such as those of Roche 454,Illumina/Solexa, and ABI SOLID, have dramatically reduced the cost of producing short reads of the genome of new species....The recent breakthroughs in next-generation sequencing technologies, such as those of Roche 454,Illumina/Solexa, and ABI SOLID, have dramatically reduced the cost of producing short reads of the genome of new species. The huge volume of reads, along with short read length, high coverage, and sequencing errors, poses a great challenge to de novo genome assembly. However, the paired-end information provides a new solution to these problems. In this paper, we review and compare some current assembly tools, including Newbler, CAP3, Velvet,SOAPdenovo, AllPaths, Abyss, IDBA, PE-Assembly, and Telescoper. In general, we compare the seed extension and graph-based methods that use the overlap/lapout/consensus approach and the de Bruijn graph approach for assembly. At the end of the paper, we summarize these methods and discuss the future directions of genome assembly.展开更多
基金Supported by the National Natural Science Foundation of China(No.61601296,61701295,61801286)the Major Scientific and Technological Innovation Projects in Chengdu(No.2019-YF08-00082-GX)the Talent Program of Shanghai University of Engineering Science(No.2018RC43)。
文摘A correlation overlapping partial transmit sequence(C-OPTS) algorithm is proposed to solve the issue of high complexity of overlapping partial transmit sequence(OPTS) algorithm in suppressing the peak to average power ratio(PAPR) of filter bank multicarrier-offset quadrature amplitude modulation(FBMC-OQAM) signals.The V subblocks in partial transmit sequence(PTS) are regrouped into U combinations according to the correlation coefficient p,and overlapping subblocks are allowed between adjacent groups.The search starts from the first group and sets the phase factors of the subsequent groups to 1.When the phase factors of the non-overlapping subblocks in the first group are determined,the subsequent groups are searched in turn to determine their respective phase factors.Starting from the second data block,the data overlapped with it should be taken into account when determining its optimal phase factor vector.Theoretical analysis and simulation results indicate that compared with the OPTS algorithm,the proposed algorithm can significantly reduce the computational complexity at the cost of slight deterioration of PAPR performance.Meanwhile,compared with the even-odd iterative double-layers OPTS(ID-OPTS) algorithm,it can further reduce the complexity and obtain a better PAPR suppression effect.
基金supported in part by the National Natural Science Foundation of China (Nos.61232001,61128006,and 61073036)
文摘The recent breakthroughs in next-generation sequencing technologies, such as those of Roche 454,Illumina/Solexa, and ABI SOLID, have dramatically reduced the cost of producing short reads of the genome of new species. The huge volume of reads, along with short read length, high coverage, and sequencing errors, poses a great challenge to de novo genome assembly. However, the paired-end information provides a new solution to these problems. In this paper, we review and compare some current assembly tools, including Newbler, CAP3, Velvet,SOAPdenovo, AllPaths, Abyss, IDBA, PE-Assembly, and Telescoper. In general, we compare the seed extension and graph-based methods that use the overlap/lapout/consensus approach and the de Bruijn graph approach for assembly. At the end of the paper, we summarize these methods and discuss the future directions of genome assembly.