The high boron alloy surfacing layer was easily cracked due to its insufficient toughness by using hybrid powder/ wire overlaying method. In order to explore the cracked mechanism, the microstructures and the wear res...The high boron alloy surfacing layer was easily cracked due to its insufficient toughness by using hybrid powder/ wire overlaying method. In order to explore the cracked mechanism, the microstructures and the wear resistance of the samples with different boron contents were studied. Further, phases analysis, microhardness, macrohardness and wear test were also carried out. The boron content depended microstructures were observed. The precipitation of the Fe2B, Fe3 ( C, B), Fe23 (C, B)6 were increased with the increase of boron content. It was found that the wear resistance was independent of the macrohardness as the macrohardness increased firstly and then remained steady at -62 HRC. However, the wear resistance was depended on the boron contents, and which increased with the increase of the boron contents. The abrasive loss mechanism changed from plastic deformation removal to fracture removal.展开更多
By integrating the merits of the map overlay method and the geographic information system (GIS), a GIS based map overlay method was developed to analyze comprehensively the environmental vulnerability around railway a...By integrating the merits of the map overlay method and the geographic information system (GIS), a GIS based map overlay method was developed to analyze comprehensively the environmental vulnerability around railway and its impact on the environment, which is adapted for the comprehensive assessment of railway environmental impact and the optimization of railway alignments. The assessment process of the GIS based map overlay method was presented, which includes deciding the system structure and weights of assessment factors, making environmental vulnerability grade maps, and evaluating the alternative alignments comprehensively to obtain the best one. With the GIS functions of spatial analysis, such as overlay analysis and buffer analysis, and functions of handling attribute data, the GIS based map overlay method overcomes the shortcomings of the existing map overlay method and the conclusion is more reasonable. In the end, a detailed case study was illustrated to verify the efficiency of the method.展开更多
The graph overlay method is used to evaluate the noise impact of route alignment and the results can serve as a reference for the route alignment optimal selection. The geographic information system(GIS), with its pow...The graph overlay method is used to evaluate the noise impact of route alignment and the results can serve as a reference for the route alignment optimal selection. The geographic information system(GIS), with its powerful function of handling attribute data and spatial analysis, is adopted to calculate the noise comprehensive impact area of each alignment. With the graph overlay method, the noise vulnerability and noise impact distribution are both taken into account in the noise impact assessment of route alignment. With GIS, the efficiency of work and the reliability of result are greatly improved. By a combination of them, the noise impact on environment is fully presented in a visual way and the assessment result has vital value in route alignment optimal selection. A detailed case study is illustrated and the efficiency of the method is verified.展开更多
The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study are...The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study area which is extending along Karakorum Highway(KKH) from Besham to Chilas. Intense seismicity, deep gorges, steep terrain and extreme climatic events trigger multiple mountain hazards along the KKH, among which debris flow is recognized as the most destructive geohazard. This study aims to prepare a field-based debris flow inventory map at a regional scale along a 200 km stretch from Besham to Chilas. A total of 117 debris flows were identified in the field, and subsequently, a point-based debris-flow inventory and catchment delineation were performed through Arc GIS analysis. Regional scale debris flow susceptibility and propagation maps were prepared using Weighted Overlay Method(WOM) and Flow-R technique sequentially. Predisposing factors include slope, slope aspect, elevation, Topographic Roughness Index(TRI), Topographic Wetness Index(TWI), stream buffer, distance to faults, lithology rainfall, curvature, and collapsed material layer. The dataset was randomly divided into training data(75%) and validation data(25%). Results were validated through the Receiver Operator Characteristics(ROC) curve. Results show that Area Under the Curve(AUC) using WOM model is 79.2%. Flow-R propagation of debris flow shows that the 13.15%, 22.94%, and 63.91% areas are very high, high, and low susceptible to debris flow respectively. The propagation predicated by Flow-R validates the naturally occurring debris flow propagation as observed in the field surveys. The output of this research will provide valuable input to the decision makers for the site selection, designing of the prevention system, and for the protection of current infrastructure.展开更多
The influence of the most important parameters on the service life of reinforced asphalt overlay with geogrid materials in bending mode was examined by employing the Taguchi method and analysis of variance techniques....The influence of the most important parameters on the service life of reinforced asphalt overlay with geogrid materials in bending mode was examined by employing the Taguchi method and analysis of variance techniques. The objectives of this experiment was to investigate the effects of grid stiffness, tensile strength, coating type, amount of tack coat, overlay thickness, crack width and stiffnesses of asphalt overlay and existing asphalt concrete on propagation of the reflection cracking. Results indicate that the stiffnesses of cracked layer and overlay are the main significant factors that can directly improve the service life of an overlay against the reflection cracking. Generally, glass grid is more effective in reinforced overlay than polyester grid. Effect of crack width of the existing layer is significant when its magnitude increases from 6 to 9 mm.展开更多
基金supported by the Heilongjiang Province Natural Science Foundation(No.ZD201008)Jiamusi University Scientific Research Project(22Zb201518)State Key Laboratory of Advanced Welding Production Technology Project(AWJ-M13-04)
文摘The high boron alloy surfacing layer was easily cracked due to its insufficient toughness by using hybrid powder/ wire overlaying method. In order to explore the cracked mechanism, the microstructures and the wear resistance of the samples with different boron contents were studied. Further, phases analysis, microhardness, macrohardness and wear test were also carried out. The boron content depended microstructures were observed. The precipitation of the Fe2B, Fe3 ( C, B), Fe23 (C, B)6 were increased with the increase of boron content. It was found that the wear resistance was independent of the macrohardness as the macrohardness increased firstly and then remained steady at -62 HRC. However, the wear resistance was depended on the boron contents, and which increased with the increase of the boron contents. The abrasive loss mechanism changed from plastic deformation removal to fracture removal.
文摘By integrating the merits of the map overlay method and the geographic information system (GIS), a GIS based map overlay method was developed to analyze comprehensively the environmental vulnerability around railway and its impact on the environment, which is adapted for the comprehensive assessment of railway environmental impact and the optimization of railway alignments. The assessment process of the GIS based map overlay method was presented, which includes deciding the system structure and weights of assessment factors, making environmental vulnerability grade maps, and evaluating the alternative alignments comprehensively to obtain the best one. With the GIS functions of spatial analysis, such as overlay analysis and buffer analysis, and functions of handling attribute data, the GIS based map overlay method overcomes the shortcomings of the existing map overlay method and the conclusion is more reasonable. In the end, a detailed case study was illustrated to verify the efficiency of the method.
基金Project (2004036125) supported by Postdoctoral Science Foundation of China project(2002F008 2003F012) supportedby the Science and Technology Research and Development Planning Projects of the Ministry of Railway of China
文摘The graph overlay method is used to evaluate the noise impact of route alignment and the results can serve as a reference for the route alignment optimal selection. The geographic information system(GIS), with its powerful function of handling attribute data and spatial analysis, is adopted to calculate the noise comprehensive impact area of each alignment. With the graph overlay method, the noise vulnerability and noise impact distribution are both taken into account in the noise impact assessment of route alignment. With GIS, the efficiency of work and the reliability of result are greatly improved. By a combination of them, the noise impact on environment is fully presented in a visual way and the assessment result has vital value in route alignment optimal selection. A detailed case study is illustrated and the efficiency of the method is verified.
基金financially supported by the Higher Education Commission of Pakistan (HEC) grant under National Research Program for Universities (NRPU) with No: (20-14681/NRPU/R&D/HEC/20212021)。
文摘The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study area which is extending along Karakorum Highway(KKH) from Besham to Chilas. Intense seismicity, deep gorges, steep terrain and extreme climatic events trigger multiple mountain hazards along the KKH, among which debris flow is recognized as the most destructive geohazard. This study aims to prepare a field-based debris flow inventory map at a regional scale along a 200 km stretch from Besham to Chilas. A total of 117 debris flows were identified in the field, and subsequently, a point-based debris-flow inventory and catchment delineation were performed through Arc GIS analysis. Regional scale debris flow susceptibility and propagation maps were prepared using Weighted Overlay Method(WOM) and Flow-R technique sequentially. Predisposing factors include slope, slope aspect, elevation, Topographic Roughness Index(TRI), Topographic Wetness Index(TWI), stream buffer, distance to faults, lithology rainfall, curvature, and collapsed material layer. The dataset was randomly divided into training data(75%) and validation data(25%). Results were validated through the Receiver Operator Characteristics(ROC) curve. Results show that Area Under the Curve(AUC) using WOM model is 79.2%. Flow-R propagation of debris flow shows that the 13.15%, 22.94%, and 63.91% areas are very high, high, and low susceptible to debris flow respectively. The propagation predicated by Flow-R validates the naturally occurring debris flow propagation as observed in the field surveys. The output of this research will provide valuable input to the decision makers for the site selection, designing of the prevention system, and for the protection of current infrastructure.
文摘The influence of the most important parameters on the service life of reinforced asphalt overlay with geogrid materials in bending mode was examined by employing the Taguchi method and analysis of variance techniques. The objectives of this experiment was to investigate the effects of grid stiffness, tensile strength, coating type, amount of tack coat, overlay thickness, crack width and stiffnesses of asphalt overlay and existing asphalt concrete on propagation of the reflection cracking. Results indicate that the stiffnesses of cracked layer and overlay are the main significant factors that can directly improve the service life of an overlay against the reflection cracking. Generally, glass grid is more effective in reinforced overlay than polyester grid. Effect of crack width of the existing layer is significant when its magnitude increases from 6 to 9 mm.