期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Highly Reversible Zn Metal Anodes Enabled by Increased Nucleation Overpotential 被引量:2
1
作者 Zhengqiang Hu Fengling Zhang +8 位作者 Anbin Zhou Xin Hu Qiaoyi Yan Yuhao Liu Faiza Arshad Zhujie Li Renjie Chen Feng Wu Li Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期197-209,共13页
Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has... Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has not yet attracted enough attention from researchers to our knowledge. Here, we propose that thermodynamic nucleation overpotential of Zn deposition can be boosted through complexing agent and select sodium L-tartrate(Na-L) as example. Theoretical and experimental characterization reveals L-tartrate anion can partially replace H_(2)O in the solvation sheath of Zn^(2+), increasing de-solvation energy. Concurrently, the Na^(+) could absorb on the surface of Zn anode preferentially to inhibit the deposition of Zn^(2+) aggregation. In consequence, the overpotential of Zn deposition could increase from 32.2 to 45.1 mV with the help of Na-L. The Zn-Zn cell could achieve a Zn utilization rate of 80% at areal capacity of 20 mAh cm^(-2). Zn-LiMn_(2)O_(4) full cell with Na-L additive delivers improved stability than that with blank electrolyte. This study also provides insight into the regulation of nucleation overpotential to achieve homogeneous Zn deposition. 展开更多
关键词 Nucleation overpotential Complexing agent Zn batteries Zn deposition
下载PDF
Active straining engineering on self-assembled stacked Ni-based hybrid electrode for ultra-low overpotential
2
作者 Shujie Liu Rui-Ting Gao +3 位作者 Xianhu Liu Xueyuan Zhang Limin Wu Lei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期217-226,I0006,共11页
Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stac... Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stacked deposition strategy to in situ activation and reconstruction of NiO/NiOOH on Ni matrix,following with the migration of Fe ions to NiOOH.The Fe sites on the Ni/NiO/NiOOH facilitate the formation of the stable*OH oxygenated intermediates,and the Ni matrix in the catalyst provides the catalyst excellent stability.The oxygen evolution reaction(OER)performance of the stacked NiFe-5 with compressive strain displays the strengthened binding to oxygenated intermediates and superior OER activity,the ultralow overpotentials of 162 versus reversible hydrogen electrode at 10 mA cm^(-2).On the other hand,the Ni-5 without the incorporation of Fe has shown an outstanding hydrogen evolution reaction(HER)activity,affording an overpotential of 47 mV at 10 mA cm^(-2).The NiFe-5‖Ni-5 enables the overall water splitting at a voltage of 1.508 V to achieve 20 mA cm^(-2) with remarkable durability.The stacked deposition strategy improves binding strength of Ni-based catalysts to oxygenated intermediates via generating compressive strain,causing high catalytic activities on OER and HER. 展开更多
关键词 Ni-based catalysts Self-assembly stacked structure Ultra-low overpotential Water splitting
下载PDF
Confining Li_(2)O_(2) in tortuous pores of mesoporous cathodes to facilitate low charge overpotentials for Li-O_(2) batteries
3
作者 Yin Zhou Yong Zhao +3 位作者 Zhenjie Liu Zhangquan Peng Li Wang Wei Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期55-61,共7页
Achieving low charge overpotentials represents one of the most critical challenges for pursuing highperformance lithium-oxygen(Li-O_(2))batteries.Herein,we propose a strategy to realize low charge overpotentials by co... Achieving low charge overpotentials represents one of the most critical challenges for pursuing highperformance lithium-oxygen(Li-O_(2))batteries.Herein,we propose a strategy to realize low charge overpotentials by confining the growth of lithium peroxide(Li_(2)O_(2))inside mesoporous channels of cathodes(CMK-8).The CMK-8 cathode with tortuous pore structures can extend the diffusion distance of lithium superoxide(LiO_(2))in the mesoporous channels,facilitating the further reduction of LiO_(2) to lithium peroxide(Li_(2)O_(2))inside the pores and preventing them to be diffused out of the pores.Therefore,Li_(2)O_(2) is trapped in the mesoporous channels of CMK-8 cathodes,ensuring a good Li_(2)O_(2)/CMK-8 contact interface.The CMK-8 electrode exhibits a low charge overpotential of 0.43 V and a good cycle life for 72 cycles with a fixed capacity of 500 m Ah g^(-1) at 0.1 A g^(-1).This study proposes a strategy to achieve a low charge overpotential by confining Li_(2)O_(2) growth in the mesoporous channels of cathodes. 展开更多
关键词 Lithium-oxygen CMK-8 cathode Charge overpotential Lithium superoxide Cycle performance
下载PDF
Regulating surface electron structure of PtNi nanoalloy via boron doping for high‐current‐density Li‐O2 batteries with low overpotential and long‐life cyclability 被引量:1
4
作者 Yajun Ding Yuanchao Huang +2 位作者 Yuejiao Li Tao Zhang Zhong‐Shuai Wu 《SmartMat》 2024年第1期110-120,共11页
The realization of high‐efficiency,reversible,stable,and safe Li‐O2 batteries is severely hindered by the large overpotential and side reactions,especially at high rate conditions.Therefore,rational design of cathod... The realization of high‐efficiency,reversible,stable,and safe Li‐O2 batteries is severely hindered by the large overpotential and side reactions,especially at high rate conditions.Therefore,rational design of cathode catalysts with high activity and stability is crucial to overcome the terrible issues at high current density.Herein,we report a surface engineering strategy to adjust the surface electron structure of boron(B)‐doped PtNi nanoalloy on carbon nanotubes(PtNiB@CNTs)as an efficient bifunctional cathodic catalyst for high‐rate and long‐life Li‐O2 batteries.Notably,the Li‐O2 batteries assembled with as‐prepared PtNiB@CNT catalyst exhibit ultrahigh discharge capacity of 20510 mA·h/g and extremely low overpotential of 0.48 V at a high current density of 1000 mA/g,both of which outperform the most reported Pt‐based catalysts recently.Meanwhile,our Li‐O2 batteries offer excellent rate capability and ultra‐long cycling life of up to 210 cycles at 1000 mA/g under a fixed capacity of 1000 mA·h/g,which is two times longer than those of Pt@CNTs and PtNi@CNTs.Furthermore,it is revealed that surface engineering of PtNi nanoalloy via B doping can efficiently tailor the electron structure of nanoalloy and optimize the adsorption of oxygen species,consequently delivering excellent Li‐O2 battery performance.Therefore,this strategy of regulating the nanoalloy by doping nonmetallic elements will pave an avenue for the design of high‐performance catalysts for metal‐oxygen batteries. 展开更多
关键词 B doping bifunctional catalyst Li‐O2 battery low charge overpotential PtNi nanoalloy
原文传递
Industrial-current-density CO_(2)-to-formate conversion with low overpotentials enabled by disorder-engineered metal sites 被引量:1
5
作者 Zhiqiang Wang Xiaolong Zu +7 位作者 Xiaodong Li Li Li Yang Wu Shumin Wang Peiquan Ling Yuan Zhao Yongfu Sun Yi Xie 《Nano Research》 SCIE EI CSCD 2022年第8期6999-7007,共9页
CO_(2)electroreduction to formate is technically feasible and economically viable,but still suffers from low selectivity and high overpotential at industrial current densities.Here,lattice-distorted metallic nanosheet... CO_(2)electroreduction to formate is technically feasible and economically viable,but still suffers from low selectivity and high overpotential at industrial current densities.Here,lattice-distorted metallic nanosheets with disorder-engineered metal sites are designed for industrial-current-density CO_(2)-to-formate conversion at low overpotentials.As a prototype,richly lattice-distorted bismuth nanosheets are first constructed,where abundant disorder-engineered Bi sites could be observed by high-angle annular dark-field scanning transmission electron microscopy image.In-situ Fourier-transform infrared spectra reveal the CO_(2)•−*group is the key intermediate,while theoretical calculations suggest the electron-enriched Bi sites could effectively lower the CO_(2)activation energy barrier by stabilizing the CO_(2)•−*intermediate,further affirmed by the decreased formation energy from 0.49 to 0.39 eV.As a result,the richly lattice-distorted Bi nanosheets exhibit the ultrahigh current density of 800 mA·cm^(−2)with 91%Faradaic efficiencies for CO_(2)-to-formate electroreduction,and the formate selectivity can reach nearly 100%at the current density of 200 mA·cm^(−2)with a very low overpotential of ca.570 mV,outperforming most reported metal-based electrocatalysts. 展开更多
关键词 CO_(2)-to-formate disorder-engineered metallic nanosheets industrial-current-density low overpotential
原文传递
Ligand centered electrocatalytic efficient CO_(2) reduction reaction at low overpotential on single-atom Ni regulated molecular catalyst 被引量:1
6
作者 Jiazhi Wang Qi Hao +2 位作者 Haixia Zhong Kai Li Xinbo Zhang 《Nano Research》 SCIE EI CSCD 2022年第7期5816-5823,共8页
Electrochemical CO_(2) reduction reaction(CO_(2)RR)into value-added chemicals/fuels is crucial for realizing the sustainable carbon cycle while mitigating the energy crisis.However,it is impeded by the relatively high... Electrochemical CO_(2) reduction reaction(CO_(2)RR)into value-added chemicals/fuels is crucial for realizing the sustainable carbon cycle while mitigating the energy crisis.However,it is impeded by the relatively high overpotential and low energy efficiency due to the lack of efficient electrocatalysts.Herein,we develop an isolated single-atom Ni catalyst regulated strategy to activate and stabilize the iron phthalocyanine molecule(Ni SA@FePc)toward a highly efficient CO_(2)RR process at low overpotential.The well-defined and homogenous catalytic centers with unique structures confer Ni SA@FePc with a significantly enhanced CO_(2)RR performance compared to single-atom Ni catalyst and FePc molecule and afford the atomic understanding on active sites and catalytic mechanism.As expected,Ni SA@FePc exhibits a high selectivity of more significant Faraday efficiency(≥95%)over a wide potential range,a high current density of~252 mA·cm^(−2) at low overpotential(390 mV),and excellent long-term stability for CO_(2)RR to CO.X-ray absorption spectroscopy measurement and theoretical calculation indicate the formation of NiN_(4)-O_(2)-FePc heterogeneous structure for Ni SA@FePc.And CO_(2)RR prefers to occur at the raised N centers of NiN4-O_(2)-FePc heterogeneous structure for Ni SA@FePc,which enables facilitated adsorption of*COOH and desorption of CO,and thus accelerated overall reaction kinetics. 展开更多
关键词 single-atom Ni iron phthalocyanine molecular catalyst carbon dioxide reduction reaction ultra-low overpotential
原文传递
pH Overpotential for Unveiling the pH Gradient Effect of H^(+)/OH^(−)Transport in Electrode Reaction Kinetics
7
作者 Fengjun Yin Ling Fang Hong Liu 《CCS Chemistry》 CAS 2022年第1期369-380,共12页
The pH gradient caused by H^(+)/OH^(−)transport on an electrode surface is the key factor determining reaction performance,but its detailed impact on the electrode reaction kinetics has yet to be clarified.Here,the pH... The pH gradient caused by H^(+)/OH^(−)transport on an electrode surface is the key factor determining reaction performance,but its detailed impact on the electrode reaction kinetics has yet to be clarified.Here,the pH gradient effect was determined by developing electrode reaction equations,considering the overpotential assigned to the pH gradient called pH overpotential.The pH gradient effect was revealed to involve two aspects:(1)the Nernst pH overpotential,accounting for the common Nernst relationship with pH,and(2)the pH-dependent function of the electron-transfer coefficient(α_(pH)).Both parts were verified experimentally using oxygen reduction reaction and hydrogen evolution reaction,obviously,with differentα_(pH) functions.Detailedα_(pH) function effect was clarified based on numerical calculations of the electrode reaction equations.We found that the effect could be assessed suitably by an apparent constant(α_(app))and a nonlinear fitting method proposed forα_(app) value estimation.The results of this study provide the kinetic fundamentals of electrode reactions involving H^(+)/OH^(−)and contribute to the understanding and assessment of their performance with the H^(+)/OH^(−)transport effect. 展开更多
关键词 pH overpotential pH gradient effect electrode reaction kinetics H^(+)and OH^(−)transport hydrogen evolution reaction oxygen reduction reaction
原文传递
Effective ethanol-to-CO_(2) electrocatalysis at iridium-bismuth oxide featuring the impressive negative shifting of the working potential
8
作者 Ruilin Wei Yue Liu +2 位作者 Huazhong Ma Xingyu Ma Yaoyue Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期23-31,I0002,共10页
Since low overpotential for the anodic ethanol oxidation reaction(EOR)can favor the higher output voltage and power of direct ethanol fuel cells(DEFCs),it is critical to design new EOR catalysts with efficient ethanol... Since low overpotential for the anodic ethanol oxidation reaction(EOR)can favor the higher output voltage and power of direct ethanol fuel cells(DEFCs),it is critical to design new EOR catalysts with efficient ethanol-to-CO_(2)activity at low applied potentials.Thereby,carbon-supported Ir-Bi_(2)O_(3)(Ir-Bi_(2)O_(3)/C)catalysts with highly dispersive bismuth oxide on the iridium surface are designed and prepared,which can merit splitting the ethanol C–C bond and promoting the oxidation of C1 intermediates at the bifunctional interfaces.The as-obtained Ir-Bi2O3/C catalysts show superior EOR mass activity of up to ca.2250 m A mgIr-1.Moreover,they exhibit the record lowest onset oxidation potentials(0.17–0.22 V vs.RHE)and the peak potential(ca.0.58 V vs.RHE),being 130–300 m V lower than the previous landmark noble metallic catalysts.Furthermore,an apparent C1 pathway faraday efficiency(FEC1)of 28%±5.9%at 0.5 V vs.RHE can be obtained at Ir-Bi_(2)O_(3)/C.This work might provide new insights into the new anodic EOR catalysts for increasing the power of DEFCs. 展开更多
关键词 EOR Low overpotential C1 selectivity IRIDIUM Bismuth oxide
下载PDF
金属电积中节能阳极的研究 被引量:1
9
作者 刘晓霞 梁英教 李乃军 《有色金属》 CSCD 1990年第2期61-66,共6页
本文研究了钛基IrO_2-PAN电极的制备,得到了一种有实际意义的新型节能阳极(锌电积条件下,η02=0.316V,在i=20,000A/m^2的加速寿命实验中τ=118.4hr)。该电极寿命较长,价格不算高,有工业生产可行性,可节约消耗在电解池部分的能量25%。还... 本文研究了钛基IrO_2-PAN电极的制备,得到了一种有实际意义的新型节能阳极(锌电积条件下,η02=0.316V,在i=20,000A/m^2的加速寿命实验中τ=118.4hr)。该电极寿命较长,价格不算高,有工业生产可行性,可节约消耗在电解池部分的能量25%。还考察了不同制备条件对电极表面结构及电化学性能的影响,得出了最佳电极的大致表面结构。 展开更多
关键词 ANODE overpotential TITANIUM iridium dioxide PAN morphology.
下载PDF
N-heterocyclic carbene as a promising metal-free electrocatalyst with high efficiency for nitrogen reduction to ammonia 被引量:5
10
作者 Hongyan Li Le Yang +3 位作者 Zhongxu Wang Peng Jin Jingxiang Zhao Zhongfang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期78-86,I0003,共10页
Electrocatalytic nitrogen reduction reaction(NRR)at ambient conditions holds great promise for sustainably synthesizing ammonia(NH3),while developing highly-efficient,long-term stable,and inexpensive catalysts to acti... Electrocatalytic nitrogen reduction reaction(NRR)at ambient conditions holds great promise for sustainably synthesizing ammonia(NH3),while developing highly-efficient,long-term stable,and inexpensive catalysts to activate the inert N≡N bond is a key scientific issue.In this work,on the basis of the concept"N-heterocyclic carbenes(NHCs)",we propose a carbon decorated graphitic-carbon nitride(C/g-C3N4)as novel metal-free NRR electrocatalyst by means of density functional theory(DFT)computations.Our results reveal that the introduced C atom in g-C3N4 surface can be regarded as NHCs and catalytic sites for activating N≡N bond,and are stabilized by the g-C3N4 substrate due to sterically disfavored dimerization.Especially,this NHCs-based heterogeneous catalysis can efficiently reduce the activated N2 molecule to NH3 with a low overpotential of 0.05 V via an enzymatic mechanism.Our work is the first report of NHCs-based electrocatalyst for N2 fixation,thus opening an alternative avenue for advancing sustainable NH3 production. 展开更多
关键词 Nitrogen reduction reaction N-heterocyclic carbenes overpotential Density functional theory
下载PDF
A systematical study on the electrodeposition process of metallic lithium 被引量:4
11
作者 Hailin Fan Chunhui Gao +3 位作者 Huai Jiang Qingyuan Dong Bo Hong Yanqing Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期59-70,共12页
In this study,commercial copper(Cu)foil and Cu foam are used as the working electrodes to systematically investigate the electrochemical deposition and dissolution processes of metallic lithium(Li)on these electrodes;... In this study,commercial copper(Cu)foil and Cu foam are used as the working electrodes to systematically investigate the electrochemical deposition and dissolution processes of metallic lithium(Li)on these electrodes;Li metal deposited on the Cu foil electrode is porous and loose.The surface solid electrolyte interface(SEI)film after dissolution from Li dendrites maintains a dendritic porous structure,resulting in a large volume effect of the electrode during the cycle.The Cu foam electrode provides preferential nucleation and deposition sites near the side surface of the separator;the difference in Li affinity results in a heterogeneous deposition and dendrite growth of metallic Li. 展开更多
关键词 Deposition behavior Deposition overpotential Dendrite growth Selective deposition Interface impedance
下载PDF
Environment friendly hydrothermal synthesis of carbon–Co3O4 nanorods composite as an efficient catalyst for oxygen evolution reaction 被引量:4
12
作者 Amol R.Jadhav Harshad A.Bandal +1 位作者 Ashif H.Tamboli Hern Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期695-702,共8页
The design of cost-effective, highly active catalysts for hydrogen energy production is a vital element in the societal pursuit of sustainable energy. Water electrolysis is one of the most convenient processes to prod... The design of cost-effective, highly active catalysts for hydrogen energy production is a vital element in the societal pursuit of sustainable energy. Water electrolysis is one of the most convenient processes to produce high purity hydrogen. Cobalt-based catalysts are well-known electrocatalysts for oxygen evolution reaction(OER). In this article, all these merits indicate that the present cobalt nanocomposite is a promising electrocatalyst for OER. C–CoO-nanorods catalyst with nanorod structure was synthesized by hydrothermal treatment of CoCl·6HO/dextrose/urea mixture at 180 °C for 18 h and then calcined at400 °C for 3.5 h. The role of dextrose percentage in solution to achieve the uniform coating of carbon on the surface of CoO-nanorods has been demonstrated. The prepared materials were characterized by X-ray diffraction(XRD), X-ray photoelectron spectrum(XPS), field emission scanning electron microscopy(FE-SEM), high-resolution transmission electron microscopy(HR-TEM), and Brunauer–Emmett–Teller instrument(BET). Due to its unique morphology, the C–CoO-nanorods catalyst exhibited better activity than CoO-microplates catalyst for OER in 1 M KOH aqueous solution. The results showed a highly efficient, scalable, and low-cost method for developing highly active and stable OER electrocatalysts in alkaline solution. 展开更多
关键词 Oxygen evolution reaction overpotential Tafel slope Synergistic effect
下载PDF
Mathematical analysis of SOFC based on co-ionic conducting electrolyte 被引量:2
13
作者 Ke-Qing Zheng Meng Ni +1 位作者 Qiong Sun Li-Yin Shen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第3期388-394,共7页
In co-ionic conducting solid oxide fuel cell (SOFC), both oxygen ion (O2) and proton (H+) can transport through the electrolyte, generating steam in both the an-ode and cathode. Thus the mass transport phenomen... In co-ionic conducting solid oxide fuel cell (SOFC), both oxygen ion (O2) and proton (H+) can transport through the electrolyte, generating steam in both the an-ode and cathode. Thus the mass transport phenomenon in the electrodes is quite different from that in conventional SOFC with oxygen ion conducting electrolyte (O-SOFC) or with proton conducting electrolyte (H-SOFC). The generation of steam in both electrodes also affects the concentration over-potential loss and further the SOFC performance. However, no detailed modeling study on SOFCs with co-ionic electrolyte has been reported yet. In this paper, a new mathematical model for SOFC based on co-ionic electrolyte was developed to predict its actual performance considering three major kinds of overpotentials. Ohm's law and the Butler-Volmer formula were used to model the ion conduction and electrochemical reactions, respectively. The dusty gas model (DGM) was employed to simulate the mass transport processes in the porous electrodes. Parametric simulations were performed to investigate the effects of proton transfer number (tH) and current density (jtotal) on the cell performance. It is interesting to find that the co-ionic conducting SOFC could perform better than O-SOFC and H-SOFC by choosing an appropriate proton transfer number. In addition, the co-ionic SOFC shows smaller difference between the anode and cathode concentration overpotentials than O-SOFC and H-SOFC at certain t H values. The results could help material selection for enhancing SOFC performance. 展开更多
关键词 Co-ionic electrolyte Proton transport number Concentration overpotential Mass transport Model
下载PDF
Integrated Ni-P-S nanosheets array as superior electrocatalysts for hydrogen generation 被引量:1
14
作者 Haoxuan Zhang Haibo Jiang +2 位作者 Yanjie Hu Hao Jiang Chunzhong Li 《Green Energy & Environment》 SCIE 2017年第2期112-118,共7页
Searching for efficient and robust non-noble electrocatalysts for hydrogen generation is extremely desirable for future green energy systems.Here, we present the synthesis of integrated Ni-P-S nanosheets array includi... Searching for efficient and robust non-noble electrocatalysts for hydrogen generation is extremely desirable for future green energy systems.Here, we present the synthesis of integrated Ni-P-S nanosheets array including Ni_2P and NiS on nickel foam by a simple simultaneous phosphorization and sulfurization strategy. The resultant sample with optimal composition exhibits superior electrocatalytic performance for hydrogen evolution reaction(HER) in a wide pH range. In alkaline media, it can generate current densities of 10, 20 and 100 mA cm^(-2) at low overpotentials of only-101.9,-142.0 and-207.8 mV with robust durability. It still exhibits high electrocatalytic activities even in acid or neutral media. Such superior electrocatalytic performances can be mainly attributed to the synergistic enhancement of the hybrid Ni-P-S nanosheets array with integration microstructure. The kind of catalyst gives a new insight on achieving efficient and robust hydrogen generation. 展开更多
关键词 Nanosheets array Nickel phosphide Nickel sulfide overpotential Hydrogen generation
下载PDF
Influence of process parameters on electrochemical and physical properties of sputtered iron-doped nickel oxide thin films
15
作者 黄金昭 徐征 +2 位作者 李海玲 亢国虎 王文静 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2006年第6期1301-1306,共6页
The iron-doped nickel oxide films used as oxygen evolution catalysts in the photoelectrochemical production of hydrogen from solar energy were deposited by means of RF reactive magnetron sputtering from a Ni-Fe alloy ... The iron-doped nickel oxide films used as oxygen evolution catalysts in the photoelectrochemical production of hydrogen from solar energy were deposited by means of RF reactive magnetron sputtering from a Ni-Fe alloy target in oxygen and argon atmosphere.The effects of processing parameters on the film properties,such as overpotential,composition,surface morphology and preferred orientation,were investigated.The electrochemical experiment,structural and compositional measurements indicate that the relative lower substrate temperature,higher RF power,higher working pressure and oxygen content are necessary to gain lower overpotential.The lowest overpotential of 251 mV is obtained at a current density of 80 mA/cm2.The existence of iron,which acts as activity site,and Ni3+ ion is responsible for lowering overpotential.By analyzing SEM and XRD data,it is also noticed that an improvement in crystallinity,appropriate grain size and less crystalline phase contribute to an increased electrocatalytic activity in oxygen evolution reaction.These results mentioned above indicate that iron-doped nickel oxide is promising as an oxygen catalyst. 展开更多
关键词 iron-doped NICKEL OXIDE films overpotential PHOTOELECTROCHEMICAL
下载PDF
Ag nanoparticles anchored on MIL-100/nickel foam nanosheets as an electrocatalyst for efficient oxygen evolution reaction performance
16
作者 Tao Zhao Dazhong Zhong +3 位作者 Genyan Hao Guang Liu Jinping Li Qiang Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期480-487,共8页
Metal-organic frameworks(MOFs)exhibit excellent application potential in the field of electrocatalysis.In this study,we first prepare MIL-100 nanosheets on nickel foam(MIL-100/NF)and then successfully anchor Ag nanopa... Metal-organic frameworks(MOFs)exhibit excellent application potential in the field of electrocatalysis.In this study,we first prepare MIL-100 nanosheets on nickel foam(MIL-100/NF)and then successfully anchor Ag nanoparticles(NPs)on the nanosheets(Ag@MIL-100/NF)for oxygen evolution reaction(OER)catalysis.This strategy dramatically improves the conductivity of MIL-100 and the Ag NPs are uniformly dispersed on the nanosheets.The Ag@MIL-100/NF catalyst has excellent electrocatalytic performance and long-term corrosion resistance,with a low overpotential of 207 mV and a long-term stability of at least 100 h at a current density of 50 mA·cm^(-2).The experimental results demonstrate that this high OER catalytic performance is due to the improved charge transfer after loading Ag NPs,the combination of nanosheets and highly dispersed Ag NPs that expose more active sites and the adjusted chemical valence states of Fe and Ni in MIL-100.This work provides a surface decoration approach for the preparation of excellent catalysts directly used in the OER. 展开更多
关键词 Ag@MIL-100/NF Metal-organic frameworks CATALYSIS Kinetics overpotential ELECTROCHEMISTRY
下载PDF
Uniform zinc deposition on O,N-dual functionalized carbon cloth current collector
17
作者 Mengqi Zhou Guoqiang Sun Shuang-Quan Zang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期76-83,I0003,共9页
The society’s urgent demand for environmentally friendly, safe and low-cost energy storage devices has promoted the research of aqueous zinc-ion batteries. However, the uneven deposition of Zn ions on anodes will lea... The society’s urgent demand for environmentally friendly, safe and low-cost energy storage devices has promoted the research of aqueous zinc-ion batteries. However, the uneven deposition of Zn ions on anodes will lead to the growth of the dendrite and reduce the Coulombic efficiency as well as the lifespan of the devices. Herein, we construct an O,N-dual functionalized carbon cloth current collector via a simple hydrothermal strategy, in which the oxygen-containing functional groups and the N heteroatoms can regulate the transmission and deposition of Zn ions, respectively. The proposed synergistic strategy ensures the uniform distribution of Zn ions on the surface of the Zn anode and inhibits the formation of dendrites. The symmetric cell based on the O,N-dual doped carbon cloth presents superior cycling stability(318 h) with a low voltage hysteresis(11.2 mV) at an areal capacity of 1 m Ah cm^(-2)(20% depth of diacharge). Meanwhile, the appreciably low overpotential(16 m V) and high Columbic efficiency(98.2%)also demonstrate that the O,N-dual functionalized carbon cloth can be worked as a promising host for Zn ions deposition. 展开更多
关键词 O N-dual functionalized carbon cloth Synergistic strategy Long cycle life Low overpotential Dendrite-free Zn anode
下载PDF
Effect of Lu_2O_3 on Charge/discharge Performances of Spherical Nickel Hydroxide at High Temperature
18
作者 任俊霞 王小建 +2 位作者 李宇展 高学平 阎杰 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第6期732-736,共5页
Nickel-metal hydride (Ni/MH) batteries are one of promising batteries for electric vehicle applications, but at high temperature the charge efficiency of nickel electrode is very low. In order to improve the high-te... Nickel-metal hydride (Ni/MH) batteries are one of promising batteries for electric vehicle applications, but at high temperature the charge efficiency of nickel electrode is very low. In order to improve the high-temperature-efficiency of nickel electrode, spherical nickel hydroxide mixed with various ratios of Lu2O3 was used as active material of pasted nickel electrodes. The results of charge/discharge experiments, cyclic voltammetric measurements and XRD characterizations have shown that after addition of Lu2O3, the oxygen evolution overpotcntial is elevated much, the charge efficiency of nickel electrode at high temperature is greatly improved and the content of β-NiOOH phase increases in charged electrodes. In addition, the mixed ratio of Lu2O3 has different effects on high temperature performances of nickel electrode at different charge/discharge currents, 3.5 % is the optimum mixed ratio, and the action of Lu2O3 on high temperature electrochemical behaviors is more apparent when nickel electrodes are charged at small current than large current. 展开更多
关键词 spherical nickel hydroxide high temperature performances LU2O3 oxygen evolution overpotential rare earths
下载PDF
Revealing the illumination effect on the discharge products in high-performance Li-O_(2) batteries with heterostructured photocatalysts
19
作者 Hao Gong Tao Wang +8 位作者 Kun Chang Peng Li Lequan Liu Xingyu Yu Bin Gao Hairong Xue Renzhi Ma Jianping He Jinhua Ye 《Carbon Energy》 SCIE CAS 2022年第6期1169-1181,共13页
Aprotic lithium–oxygen batteries(LOBs)have been recognized as novel energy storage devices for their outstanding specific energy density,while the large discharge/charge overpotential is a tough barrier to be overcom... Aprotic lithium–oxygen batteries(LOBs)have been recognized as novel energy storage devices for their outstanding specific energy density,while the large discharge/charge overpotential is a tough barrier to be overcome.Here,hetero-structured MoS_(2)/ZnIn_(2)S_(4) nanosheets have been prepared to capture visible light and the generated charge carriers are utilized for promoting both the oxygen reduction reaction and the oxygen evolution reaction.With the light illumination in the discharge process,the abundant photo-inspired electrons serve as the reaction sites to promote the reduction of O_(2) into LiO_(2) which is finally deposited as Li_(2)O_(2).On the contrary,the generated holes in the valence band can contribute to the low oxidization potential of Li_(2)O_(2) during the charge process.It delivers a low charge potential of 3.29 V,with an excellent resulting energy efficiency of 96.7%,much superior to that of 69.2%in the dark condition.It is noted that the involvement of photoelectrons has influenced the growth of Li_(2)O_(2) films on the MoS_(2)/ZnIn_(2)S_(4) nanosheets through the surface-adsorption pathway.The insights from the theoretical calculation confirm that the photoelectrons favor the absorption of LiO_(2) and the formation of the Li_(2)O_(2) film through the surface route.Therefore,this paper provides a deeper understanding of the mechanism of photoinspired charge carriers in LOBs and will enable further exploration of photo-involved energy storage systems. 展开更多
关键词 bifunctional catalysts Li-O_(2)battery overpotential surface-route growth theoretical calculation
下载PDF
Facile Fabrication of Ag Nanocrystals Encapsulated in Nitrogen-doped Fibrous Carbon as an Efficient Catalyst for Lithium Oxygen Batteries
20
作者 Lili Liu Tianyi Ma +4 位作者 Weiwei Fang Yuqing Liu Kostantin Konstantinov Jiazhao Wang Hua-Kun Liu 《Energy & Environmental Materials》 SCIE CSCD 2021年第2期239-245,共7页
A facile synthesis of Ag nanocrystals encapsulated in nitrogen-doped carbon fiber(NCF)is proposed,based on the simultaneous reaction between pyrrole and Ag^(+)ions in an aqueous solvent followed by a heat treatment.Th... A facile synthesis of Ag nanocrystals encapsulated in nitrogen-doped carbon fiber(NCF)is proposed,based on the simultaneous reaction between pyrrole and Ag^(+)ions in an aqueous solvent followed by a heat treatment.The as-prepared Ag/NCF demonstrated superior catalytic behavior toward ORR and OER.Besides improved cycling stability,a much lower discharge/charge gap of 0.89 V(vs Li/Li^(+))compared with 1.38 V for NCF cathode with a fixed capacity of 500 m Ah g^(-1)was obtained in lithium oxygen batteries.The introduction of Ag crystals into NCF facilitates the oxygen reduction reaction/oxygen evolution reaction kinetics.X-ray diffraction analysis coupled with Raman spectroscopy confirmed that Ag/NCF cathode could reversibly catalyze Li_(2)O_(2)formation and decomposition.The NCF matrix offers a conductive network to realize rapid mass transfer and the encapsulated Ag nanocrystals supplied effective catalytic active sites.The combined action between both contributes to the superior electrocatalytic performance. 展开更多
关键词 Ag nanocrystals Li_(2)O_(2) Li–O_(2)batteries N-carbon fiber overpotential
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部