Oxalate is an organic dicarboxylic acid that is a common component of plant foods.The kidneys are essential organs for oxalate excretion,but excessive oxalates may induce kidney stones.Jupiter microtubule associated h...Oxalate is an organic dicarboxylic acid that is a common component of plant foods.The kidneys are essential organs for oxalate excretion,but excessive oxalates may induce kidney stones.Jupiter microtubule associated homolog 2(JPT2)is a critical molecule in Ca^(2+)mobilization,and its intrinsic mechanism in oxalate exposure and kidney stones remains unclear.This study aimed to reveal the mechanism of JPT2 in oxalate exposure and kidney stones.Genetic approaches were used to control JPT2 expression in cells and mice,and the JPT2 mechanism of action was analyzed using transcriptomics and untargeted metabolomics.The results showed that oxalate exposure triggered the upregulation of JPT2,which is involved in nicotinic acid adenine dinucleotide phosphate(NAADP)-mediated Ca^(2+)mobilization.Transcriptomic analysis revealed that cell adhesion and macrophage inflammatory polarization were inhibited by JPT2 knockdown,and these were dominated by phosphatidylinositol 3-kinase(PI3K)/AKT signaling,respectively.Untargeted metabolomics indicated that JPT2 knockdown inhibited the production of succinic acid semialdehyde(SSA)in macrophages.Furthermore,JPT2 deficiency in mice inhibited kidney stones mineralization.In conclusion,this study demonstrates that oxalate exposure facilitates kidney stones by promoting crystal-cell adhesion,and modulating macrophage metabolism and inflammatory polarization via JPT2/PI3K/AKT signaling.展开更多
Limosilactobacillus reuteri is a microbe intricately linked to humans and animal health.A thorough assessment of its safety and potential benefits is imperative prior to its application in human and animals.In this in...Limosilactobacillus reuteri is a microbe intricately linked to humans and animal health.A thorough assessment of its safety and potential benefits is imperative prior to its application in human and animals.In this investigation,we performed a comprehensive analysis encompassing genome sequencing,genomic analysis,and phenotypic characterization of L.reuteri Q35,an exceptionally proficient producer of reuterin.The whole genome sequencing results showed that the complete genome sequence spans 2145158 bp with a GC content of 38.9%and encompasses 2121 genes.Initial identification of antibiotic-resistant genes,virulence factors,and toxin-coding genes in the genome substantiated the strain’s low-risk status.Subsequent tests for antibiotic resistance,acute oral toxicology,and hemolysis further confirmed its elevated safety level.The genome of L.reuteri Q35 was found to contain genes associated with adhesion and stress tolerance.Following exposure to artificial gastric juice and bile salt,the strain exhibited a higher survival rate and demonstrated a strong scavenging ability for hydroxyl free radicals in antioxidant capacity tests.These findings suggested that L.reuteri Q35 possesses unique probiotic properties.Additionally,the genome of strain Q35 harbors three truncated oxaloyl-CoA decarboxylase genes(oxc1,oxc2 and oxc3),overexpression of which resulted in a significant increase in ammonium oxalate degradation from 29.5%to 48.8%.These findings highlight that L.reuteri Q35 exhibits both favorable safety characteristics alongside beneficial properties,making it a promising candidate for treating metabolic disorders such as hyperoxaluria.展开更多
Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as...Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as an efficient additive in manipulating the crystallization process of CsPbI_(3) perovskite films.On one hand,oxalate serves as the precipitator that facilitates the nucleation process of intermediate.The larger size of intermediate is conductive to the larger size and smaller grain boundaries of resultant perovskite.On the other hand,in subsequent annealing process,the phase conversion and growth process of transient perovskite can be decelerated due to the strong interactions of oxalate with both dimethylamine cation(DMA^(+))and Pb^(2+).Due to the optimized crystallization kinetics,the morphology and quality of CsPbI_(3) perovskite films are comprehensively improved with lower defect concentrations,and charge recombination loss is effectively suppressed.Benefiting from the optimized crystal quality of perovskite films,the carbon electrode-based CsPbI_(3) PSCs exhibit a champion efficiency of 18.48%.This represents one of the highest levels among all hole transport layer-free inorganic perovskite solar cells.展开更多
Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethyle...Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa.展开更多
BACKGROUND Acute kidney injury(AKI)due to interstitial nephritis is a known condition primarily attributed to various medications.While medication-induced interstitial nephritis is common,occurrences due to non-pharma...BACKGROUND Acute kidney injury(AKI)due to interstitial nephritis is a known condition primarily attributed to various medications.While medication-induced interstitial nephritis is common,occurrences due to non-pharmacological factors are rare.This report presents a case of severe AKI triggered by intratubular oxalate crystal deposition,leading to interstitial nephritis.The aim is to outline the case and its management,emphasizing the significance of recognizing uncommon causes of interstitial nephritis.CASE SUMMARY A 71-year-old female presented with stroke-like symptoms,including weakness,speech difficulties,and cognitive impairment.Chronic hypertension had been managed with hydrochlorothiazide(HCTZ)for over two decades.Upon admis-sion,severe hypokalemia and AKI were noted,prompting discontinuation of HCTZ and initiation of prednisolone for acute interstitial nephritis.Further investigations,including kidney biopsy,confirmed severe acute interstitial nephritis with oxalate crystal deposits as the underlying cause.Despite treatment,initial renal function showed minimal improvement.However,with prednisolone therapy and supportive measures,her condition gradually improved,high-lighting the importance of comprehensive management.CONCLUSION This case underscores the importance of a thorough diagnostic approach in identifying and addressing uncommon causes of interstitial nephritis.The occurrence of interstitial nephritis due to oxalate crystal deposition,especially without typical risk factors,emphasizes the need for vigilance in clinical practice.展开更多
The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,e...The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,electron accepting capacity,cations type and crystalline water)on the catalytic activity of acidic catalysts were investigated respectively.It was proposed and confirmed that the transesterification reaction catalyzed by a Lewis acid(FeCl3)and a Bronsted acid(H2SO4)follows a first-order kinetic reaction process.In addition,the Lewis acid-catalyzed transesterification processes with different ester structures were used to further explore and understand the speculated reaction mechanism.This work enriches the theoretical understanding of acid-catalyzed transesterification reactions and is of great significance for the development of highly active catalysts for diethyl oxalate synthesis,diminishing the industrial production cost of diethyl oxalate,and developing downstream bulk or high-value-added industrial products.展开更多
Lanthanum oxalate hydrate La2(C2O4)3·10H2O,the precursor of La2O3 ultrafine powders,was prepared by impinging stream reactor method with PEG 20000 as surfactant.Thermal decomposition of La2(C2O4)3·10H2O ...Lanthanum oxalate hydrate La2(C2O4)3·10H2O,the precursor of La2O3 ultrafine powders,was prepared by impinging stream reactor method with PEG 20000 as surfactant.Thermal decomposition of La2(C2O4)3·10H2O from room temperature to 900 °C was investigated and intermediates and final solid products were characterized by FTIR and DSC-TG.Results show that the thermal decomposition process consists of five consecutive stage reactions.Flynn-Wall-Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS) methods were implemented for the calculation of energy of activation(E),and the results show that E depends on α,demonstrating that the decomposition reaction process of the lanthanum oxalate is of a complex kinetic mechanism.The most probable mechanistic function,G(α)=[1-(1+α)1/3]2,and the kinetic parameters were obtained by multivariate non-linear regression analysis method.The average E-value that is compatible with the kinetic model is close to value which was obtained by FWO and KAS methods.The fitting curve matches the original TG curve very well.展开更多
Hierarchical europium oxalate Eu2(C2O4)3.10H2O micro-particles were synthesized through a simple precipitation method at room temperature in present of trisodium citrate. The products were characterized by X-ray dif...Hierarchical europium oxalate Eu2(C2O4)3.10H2O micro-particles were synthesized through a simple precipitation method at room temperature in present of trisodium citrate. The products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and photoluminescence. The possible formation mechanism of the hierarchical europium oxalate Eu2(C2O4)3.10H2O micro-particles was discussed.展开更多
Methyl glycolate is a good solvent and can be used as feedstock for the synthesis of some important organic chemicals. Catalytic hydrogenation of dimethyl oxalate (DMO) over copper-silver catalyst supported on silic...Methyl glycolate is a good solvent and can be used as feedstock for the synthesis of some important organic chemicals. Catalytic hydrogenation of dimethyl oxalate (DMO) over copper-silver catalyst supported on silica was studied. The Cu-Ag/SiO2 catalyst supported on silica sol was prepared by homogeneous deposition-precipitation of the mixture of aqueous euprammonia complex and silica sol. The proper active temperature of Cu-Ag/SiO2 catalyst for hydrogenation of DMO was 523-623 K. The most preferable reaction conditions for methyl glycolate (MG) were optimized: temperature at 468-478 K, 40-60 mesh catalyst diameter, H2/DMO ratio 40, and 1.0 h^-1 of LHSV.展开更多
Cu/SiO2 catalysts prepared by a convenient and efficient method using the urea hydrolysis deposition-precipitation (UHDP) technique have been proposed focusing on the effect of copper loading.The texture,structure a...Cu/SiO2 catalysts prepared by a convenient and efficient method using the urea hydrolysis deposition-precipitation (UHDP) technique have been proposed focusing on the effect of copper loading.The texture,structure and composition are systematically characterized by ICP,FTIR,N 2-physisorption,N2O chemisorption,TPR,XRD and XPS.The formation of copper phyllosilicate is observed in Cu/SiO2 catalyst by adopting UHDP method,and the amount of copper phyllosilicate is related to copper loading.It is found the structure properties and catalytic performance is profoundly affected by the amount of copper phyllosilicate.The excellent catalytic activity is attributed to the synergetic effect between Cu0 and Cu +.DMO conversion and EG selectivity are determined by the amount of Cu0 and Cu+,respectively.The proper copper loading (30 wt%) provides with the highest ratio of Cu + /Cu0,giving rise to the highest EG yield of 95% under the reaction conditions of p=2.0 MPa,T=473 K,H2/DMO=80 and LHSV=1.0h-1.展开更多
Oxalic acid was used for the removal of iron from the intermediates of ilmenite leached by KOH liquor. Various parameters, such as pH, temperature, initial oxalate concentration, and illumination were investigated. Me...Oxalic acid was used for the removal of iron from the intermediates of ilmenite leached by KOH liquor. Various parameters, such as pH, temperature, initial oxalate concentration, and illumination were investigated. Meanwhile, it was found that orthorhombic crystal Ti2O2(OH)2(C2O4)-H2O formed as the leaching proceeded. Scanning electronic microscope (SEM) images implied that the formation of Ti2O2(OH)2(C2O4).H2O with good crystallinity proceeded through three stages. Calcining Ti2O2(OH)2(C2O4)·H2O, anatase (350℃) or mtile (550℃) type TiO2 was obtained, respectively. Element analysis found that the calcined product contained 94.9% TiO2 and 2.5% iron oxide, but only about 1600 ppm dissolvable iron oxide was left, which indicates that oxalic acid was comparatively effective on iron oxide removal from the intermediates. Finally, an improved route was proposed for the upgrading of ilmenite into mtile.展开更多
High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of...High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of Y_2O_3 particles were controlled by such processingparameters as concentration of YCl_3 and oxalic acid and complex non-ionic surfactant etc. TEMphotomicrographs show that Y_2O_3 particles are spherical in shape, with an average diameter of lessthan 30 nm. Test results certify that the purity and particle diameter as well as the dispersion ofY_2O_3 nano-powder depend on the concentrations of YCl_3, oxalic acid and complex non-ionicsurfactant. The optimum ranges of the concentrations for YCl_3 and complex non-ionic surfactant whenthe diameter of Y_2O_3 particles is smaller than 100 nm are 0.43 ~1.4 mol ? L^(-1) and0.031~0.112 mol·L^(-1) respectively, while the mass fraction range of oxalic acid is 10% ~18% .The purity of Y_2O_3 nano-powder tested by ICP-AES analysis is 99.99% .展开更多
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calc...The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.展开更多
Sclerotinia sclerotiorum is one of the most devastating necrotrophic phytopathogens. Virulence of the hyphae of this fungus at different ages varies significantly. Molecular mechanisms underlying this functional disti...Sclerotinia sclerotiorum is one of the most devastating necrotrophic phytopathogens. Virulence of the hyphae of this fungus at different ages varies significantly. Molecular mechanisms underlying this functional distinction are largely unknown. In this study, we confirmed the effect of mycelial culture time/age on virulence in two host plants and elucidated its molecular and morphological basis. The virulence of the S. sclerotiorum mycelia in plants dramatically decreases along with the increase of the mycelial age. Three-day-old mycelia lost the virulence in plants. Comparative proteomics analyses revealed that metabolism pathways were comprehensively reprogrammed to suppress the oxalic acid(OA) accumulation in old mycelia. The oxaloacetate acetylhydrolase(OAH), which catalyzes OA biosynthesis, was identified in the S. sclerotiorum genome. Both gene expression and protein accumulation of OAH in old mycelia were strongly repressed. Moreover, in planta OA accumulation was strikingly reduced in old mycelia-inoculated plants compared with young vegetative mycelia-inoculated plants. Furthermore, supply with 10 mmol L^(-1) OA enabled the old mycelia infect the host plants, demonstrating that loss of virulence of old mycelia is mainly caused by being unable to accumulate OA. Additionally, aerial mycelia started to develop from 0.5-day-old vegetative mycelia and dominated over 1-day-old mycelia grown on potato dextrose agar plates. They were much smaller in hypha diameter and grew significantly slower than young vegetative mycelia when subcultured, which did not maintain to progenies. Collectively, our results reveal that S. sclerotiorum aerial hyphae-dominant old mycelia fail to accumulate OA and thereby lose the virulence in host plants.展开更多
Effect of various counterions of tartrate on the crystallization of calcium oxalate in gel system was investigated using scanning electron microscopy and X-ray diffraction. Various tartrates with hydrogen (H2tart), ...Effect of various counterions of tartrate on the crystallization of calcium oxalate in gel system was investigated using scanning electron microscopy and X-ray diffraction. Various tartrates with hydrogen (H2tart), sodium (Na2tart), potassium (K2tart), ammonium ((NH4)2tart), and a mixture of sodium and potassium cations (NaKtart) were considered. For H2tart, Na2tart, and (NH4)2tart, calcium oxalate dihydrate (COD) was induced. However, for K2tart and NaKtart, calcium oxalate trihydrate (COT) was obtained.展开更多
Summary: The neuroproteetive effects of escitalopram oxalate in rats with chronic hypoperfusion and the possible mechanism were explored. Chronic hypoperfusion (2-VO) model was prepared and given escitalopram oxala...Summary: The neuroproteetive effects of escitalopram oxalate in rats with chronic hypoperfusion and the possible mechanism were explored. Chronic hypoperfusion (2-VO) model was prepared and given escitalopram oxalate (experimental group) or PBS (control group) after 6 weeks. Eight weeks after the operation, Morris water maze test was carried out to evaluate the learning and memory ability of the rats. The cell proliferation, three-dimensional vascular distribution, cell morphological changes in ischemic area and the plasma vascular endothelial growth factor (VEGF) were detected to explore the possible mechanisms. (1) Morris water maze test showed that the escape latency in the experimental group was significantly shorter than in the control group, while the first quadrant swimming time in the experi- mental group was significantly longer than the control group (both P〈0.01). (2) Cerebrovascular confo- cal detection results showed that the inside diameter of capillaries was significantly less in the experi- mental group than in the control group; the vascular density was significantly increased in the experi- mental group and the total area of capillaries was also significantly increased in the experimental group as compared with the control group. (3) There was statistically significant difference in BrdU-positive cells in the ischemic brain tissue between the experimental group and the control group (P=0.003〈0.01). (4) VEGF concentrations in the plasma and the ischemic area were higher in the experimental group than in the control group (P〈0.05). It was concluded that escitalopram oxalate could significantly im- prove the learning and memory ability of the rats with chronic cerebral ischemia probably by the VEGF-mediated angiogenesis.展开更多
Stannous oxalate was prepared efficiently and characterized by XRD and FT-IR. It exhibited higher catalytic activity and had profitable effect than tetrabutyl titanate and stannous octoate for the synthesis of polytri...Stannous oxalate was prepared efficiently and characterized by XRD and FT-IR. It exhibited higher catalytic activity and had profitable effect than tetrabutyl titanate and stannous octoate for the synthesis of polytrimethylene terephthalate (PTT) via esterification-route. Over this catalyst, the degree of esterification of pure terephthalic acid was up to 94.4% at 260 ℃ after 1.5 h,while the intrinsic viscosity and content of terminal carboxyl groups of the corresponding PTT polyester, polymerized at 260 ℃,60 Pa for 2 h, was 0.8950 dL/g and 15 mol/t, respectively. Stannous oxalate was a promising catalyst for the synthesis of PTT polyester.展开更多
Diphenyl oxalate was synthesized from transesterification of dimethyl oxalate with phenol over TS-1 ( 2.5 wt% Ti ) catalyst. TS-1 catalyst, as a heterogeneous catalyst, showed excellent selectivity of diphenyl oxalat...Diphenyl oxalate was synthesized from transesterification of dimethyl oxalate with phenol over TS-1 ( 2.5 wt% Ti ) catalyst. TS-1 catalyst, as a heterogeneous catalyst, showed excellent selectivity of diphenyl oxalate and methylphenyl oxalate compared with other homogeneous catalysts. Lewis acid sites on TS-1 catalyst were the active sites for transesterification of dimethyl oxalate with phenol. The high selectivity was closely related to the weak acid sites over TS-1.展开更多
Highly active and selective Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate(DMO) to ethylene glycol(EG) were successfully prepared by means of a convenient one-pot synthetic method with tetraethoxysi lane...Highly active and selective Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate(DMO) to ethylene glycol(EG) were successfully prepared by means of a convenient one-pot synthetic method with tetraethoxysi lane(TEOS) as the source of silica. XRD, H2-TPR, SEM, TEM, XRF and N2 physisorption measurements were performed to characterize the texture and structure of Cu/SiO2 catalysts with different copper loadings. The active components were highly dispersed on SiO2 supports. Furthermore, the coexistence of Cu0 and Cu+ contributed a lot to the excellent performance of Cu-TEOS catalysts. The DMO conversion reached 100% and the EG selectivity reached 95% at 498 K and 2 MPa with a high liquid hourly space velocity over the 27-Cu-TEOS catalyst with an actual cop per loading of 19.0%(mass fraction).展开更多
The Cu/ZnO flower-like hierarchical porous structures were successfully synthesized via the cetyltrimethyl ammonium bromide(CTAB) assisted hydrothermal method. The morphology and structure as well as the catalytic per...The Cu/ZnO flower-like hierarchical porous structures were successfully synthesized via the cetyltrimethyl ammonium bromide(CTAB) assisted hydrothermal method. The morphology and structure as well as the catalytic performance for dimethyl oxalate(DMO) hydrogenation to ethylene glycol(EG) were investigated. Through annealing the zinc copper hydroxide carbonate(ZCHC) precursors, the Cu/ZnO flower-like hierarchical porous structures were obtained, which were assembled by a number of porous nanosheets. The catalyst made of these well-defined flower-like hierarchical porous structures with large specific surface area and effective gas diffusion path via the well-aligned porous structures showed higher EG selectivity and yield as compared to the Cu/ZnO catalyst obtained by conventional co-precipitation technique. The results indicated that the Cu/ZnO flower-like hierarchical porous structures have excellent potential application for manufacture of high performance catalysts.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.:82070723,82270797)Nature Science Foundation of Hubei Province,China(Grant No.:2022CFC020).
文摘Oxalate is an organic dicarboxylic acid that is a common component of plant foods.The kidneys are essential organs for oxalate excretion,but excessive oxalates may induce kidney stones.Jupiter microtubule associated homolog 2(JPT2)is a critical molecule in Ca^(2+)mobilization,and its intrinsic mechanism in oxalate exposure and kidney stones remains unclear.This study aimed to reveal the mechanism of JPT2 in oxalate exposure and kidney stones.Genetic approaches were used to control JPT2 expression in cells and mice,and the JPT2 mechanism of action was analyzed using transcriptomics and untargeted metabolomics.The results showed that oxalate exposure triggered the upregulation of JPT2,which is involved in nicotinic acid adenine dinucleotide phosphate(NAADP)-mediated Ca^(2+)mobilization.Transcriptomic analysis revealed that cell adhesion and macrophage inflammatory polarization were inhibited by JPT2 knockdown,and these were dominated by phosphatidylinositol 3-kinase(PI3K)/AKT signaling,respectively.Untargeted metabolomics indicated that JPT2 knockdown inhibited the production of succinic acid semialdehyde(SSA)in macrophages.Furthermore,JPT2 deficiency in mice inhibited kidney stones mineralization.In conclusion,this study demonstrates that oxalate exposure facilitates kidney stones by promoting crystal-cell adhesion,and modulating macrophage metabolism and inflammatory polarization via JPT2/PI3K/AKT signaling.
文摘Limosilactobacillus reuteri is a microbe intricately linked to humans and animal health.A thorough assessment of its safety and potential benefits is imperative prior to its application in human and animals.In this investigation,we performed a comprehensive analysis encompassing genome sequencing,genomic analysis,and phenotypic characterization of L.reuteri Q35,an exceptionally proficient producer of reuterin.The whole genome sequencing results showed that the complete genome sequence spans 2145158 bp with a GC content of 38.9%and encompasses 2121 genes.Initial identification of antibiotic-resistant genes,virulence factors,and toxin-coding genes in the genome substantiated the strain’s low-risk status.Subsequent tests for antibiotic resistance,acute oral toxicology,and hemolysis further confirmed its elevated safety level.The genome of L.reuteri Q35 was found to contain genes associated with adhesion and stress tolerance.Following exposure to artificial gastric juice and bile salt,the strain exhibited a higher survival rate and demonstrated a strong scavenging ability for hydroxyl free radicals in antioxidant capacity tests.These findings suggested that L.reuteri Q35 possesses unique probiotic properties.Additionally,the genome of strain Q35 harbors three truncated oxaloyl-CoA decarboxylase genes(oxc1,oxc2 and oxc3),overexpression of which resulted in a significant increase in ammonium oxalate degradation from 29.5%to 48.8%.These findings highlight that L.reuteri Q35 exhibits both favorable safety characteristics alongside beneficial properties,making it a promising candidate for treating metabolic disorders such as hyperoxaluria.
基金supported by the National Natural Science Foundation of China(Nos.U21A20310,22278164,22122805,22308112)the Science and Technology Program of Guangzhou,China(No.2023A04J0665)China Postdoctoral Science Foundation(No.2023M741214)。
文摘Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as an efficient additive in manipulating the crystallization process of CsPbI_(3) perovskite films.On one hand,oxalate serves as the precipitator that facilitates the nucleation process of intermediate.The larger size of intermediate is conductive to the larger size and smaller grain boundaries of resultant perovskite.On the other hand,in subsequent annealing process,the phase conversion and growth process of transient perovskite can be decelerated due to the strong interactions of oxalate with both dimethylamine cation(DMA^(+))and Pb^(2+).Due to the optimized crystallization kinetics,the morphology and quality of CsPbI_(3) perovskite films are comprehensively improved with lower defect concentrations,and charge recombination loss is effectively suppressed.Benefiting from the optimized crystal quality of perovskite films,the carbon electrode-based CsPbI_(3) PSCs exhibit a champion efficiency of 18.48%.This represents one of the highest levels among all hole transport layer-free inorganic perovskite solar cells.
基金supported by National Natural Science Foundation of China (No.22102147 and 22002151)State Key Laboratory of Chemical Engineering (No.SKL-ChE-22A02)+2 种基金Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ21B030009the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA29050300)Qinchuang Yuan high-level innovation and entrepreneurship talents implementing project (No.QCYRCXM-2022-177)。
文摘Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa.
文摘BACKGROUND Acute kidney injury(AKI)due to interstitial nephritis is a known condition primarily attributed to various medications.While medication-induced interstitial nephritis is common,occurrences due to non-pharmacological factors are rare.This report presents a case of severe AKI triggered by intratubular oxalate crystal deposition,leading to interstitial nephritis.The aim is to outline the case and its management,emphasizing the significance of recognizing uncommon causes of interstitial nephritis.CASE SUMMARY A 71-year-old female presented with stroke-like symptoms,including weakness,speech difficulties,and cognitive impairment.Chronic hypertension had been managed with hydrochlorothiazide(HCTZ)for over two decades.Upon admis-sion,severe hypokalemia and AKI were noted,prompting discontinuation of HCTZ and initiation of prednisolone for acute interstitial nephritis.Further investigations,including kidney biopsy,confirmed severe acute interstitial nephritis with oxalate crystal deposits as the underlying cause.Despite treatment,initial renal function showed minimal improvement.However,with prednisolone therapy and supportive measures,her condition gradually improved,high-lighting the importance of comprehensive management.CONCLUSION This case underscores the importance of a thorough diagnostic approach in identifying and addressing uncommon causes of interstitial nephritis.The occurrence of interstitial nephritis due to oxalate crystal deposition,especially without typical risk factors,emphasizes the need for vigilance in clinical practice.
基金funded by the Key Projects of Xinjiang Production and Construction Corps(2022AB007)the Key Projects of innovation team of Xinjiang eighth division Construction Corps 2023TD04)Liaoning Innovation Capability Fund(2021-NLTS-12-02).
文摘The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,electron accepting capacity,cations type and crystalline water)on the catalytic activity of acidic catalysts were investigated respectively.It was proposed and confirmed that the transesterification reaction catalyzed by a Lewis acid(FeCl3)and a Bronsted acid(H2SO4)follows a first-order kinetic reaction process.In addition,the Lewis acid-catalyzed transesterification processes with different ester structures were used to further explore and understand the speculated reaction mechanism.This work enriches the theoretical understanding of acid-catalyzed transesterification reactions and is of great significance for the development of highly active catalysts for diethyl oxalate synthesis,diminishing the industrial production cost of diethyl oxalate,and developing downstream bulk or high-value-added industrial products.
基金Project (IRT0974) supported by Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject (50974098) supported by the National Natural Science Foundation of China
文摘Lanthanum oxalate hydrate La2(C2O4)3·10H2O,the precursor of La2O3 ultrafine powders,was prepared by impinging stream reactor method with PEG 20000 as surfactant.Thermal decomposition of La2(C2O4)3·10H2O from room temperature to 900 °C was investigated and intermediates and final solid products were characterized by FTIR and DSC-TG.Results show that the thermal decomposition process consists of five consecutive stage reactions.Flynn-Wall-Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS) methods were implemented for the calculation of energy of activation(E),and the results show that E depends on α,demonstrating that the decomposition reaction process of the lanthanum oxalate is of a complex kinetic mechanism.The most probable mechanistic function,G(α)=[1-(1+α)1/3]2,and the kinetic parameters were obtained by multivariate non-linear regression analysis method.The average E-value that is compatible with the kinetic model is close to value which was obtained by FWO and KAS methods.The fitting curve matches the original TG curve very well.
文摘Hierarchical europium oxalate Eu2(C2O4)3.10H2O micro-particles were synthesized through a simple precipitation method at room temperature in present of trisodium citrate. The products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and photoluminescence. The possible formation mechanism of the hierarchical europium oxalate Eu2(C2O4)3.10H2O micro-particles was discussed.
文摘Methyl glycolate is a good solvent and can be used as feedstock for the synthesis of some important organic chemicals. Catalytic hydrogenation of dimethyl oxalate (DMO) over copper-silver catalyst supported on silica was studied. The Cu-Ag/SiO2 catalyst supported on silica sol was prepared by homogeneous deposition-precipitation of the mixture of aqueous euprammonia complex and silica sol. The proper active temperature of Cu-Ag/SiO2 catalyst for hydrogenation of DMO was 523-623 K. The most preferable reaction conditions for methyl glycolate (MG) were optimized: temperature at 468-478 K, 40-60 mesh catalyst diameter, H2/DMO ratio 40, and 1.0 h^-1 of LHSV.
文摘Cu/SiO2 catalysts prepared by a convenient and efficient method using the urea hydrolysis deposition-precipitation (UHDP) technique have been proposed focusing on the effect of copper loading.The texture,structure and composition are systematically characterized by ICP,FTIR,N 2-physisorption,N2O chemisorption,TPR,XRD and XPS.The formation of copper phyllosilicate is observed in Cu/SiO2 catalyst by adopting UHDP method,and the amount of copper phyllosilicate is related to copper loading.It is found the structure properties and catalytic performance is profoundly affected by the amount of copper phyllosilicate.The excellent catalytic activity is attributed to the synergetic effect between Cu0 and Cu +.DMO conversion and EG selectivity are determined by the amount of Cu0 and Cu+,respectively.The proper copper loading (30 wt%) provides with the highest ratio of Cu + /Cu0,giving rise to the highest EG yield of 95% under the reaction conditions of p=2.0 MPa,T=473 K,H2/DMO=80 and LHSV=1.0h-1.
基金supported by the National Natural Science Foundation of China (No. 50574084)the National Key Technologies R&D Program in the 11th Five-Year Plan Period (No. 2006BAC02A05)and the National Basic Research Program of China (No. 2007CB613501)
文摘Oxalic acid was used for the removal of iron from the intermediates of ilmenite leached by KOH liquor. Various parameters, such as pH, temperature, initial oxalate concentration, and illumination were investigated. Meanwhile, it was found that orthorhombic crystal Ti2O2(OH)2(C2O4)-H2O formed as the leaching proceeded. Scanning electronic microscope (SEM) images implied that the formation of Ti2O2(OH)2(C2O4).H2O with good crystallinity proceeded through three stages. Calcining Ti2O2(OH)2(C2O4)·H2O, anatase (350℃) or mtile (550℃) type TiO2 was obtained, respectively. Element analysis found that the calcined product contained 94.9% TiO2 and 2.5% iron oxide, but only about 1600 ppm dissolvable iron oxide was left, which indicates that oxalic acid was comparatively effective on iron oxide removal from the intermediates. Finally, an improved route was proposed for the upgrading of ilmenite into mtile.
文摘High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of Y_2O_3 particles were controlled by such processingparameters as concentration of YCl_3 and oxalic acid and complex non-ionic surfactant etc. TEMphotomicrographs show that Y_2O_3 particles are spherical in shape, with an average diameter of lessthan 30 nm. Test results certify that the purity and particle diameter as well as the dispersion ofY_2O_3 nano-powder depend on the concentrations of YCl_3, oxalic acid and complex non-ionicsurfactant. The optimum ranges of the concentrations for YCl_3 and complex non-ionic surfactant whenthe diameter of Y_2O_3 particles is smaller than 100 nm are 0.43 ~1.4 mol ? L^(-1) and0.031~0.112 mol·L^(-1) respectively, while the mass fraction range of oxalic acid is 10% ~18% .The purity of Y_2O_3 nano-powder tested by ICP-AES analysis is 99.99% .
基金financially supported by the Natural Science Foundation of Guangxi Province, China (No. GKZ0832256)
文摘The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.
基金supported by grants from the Special Fund for Agro-Scientific Research in the Public Interest, China (201103016)the Specialized Research Fund for the Doctoral Program of Higher Education, China (SRFDP) (20110101110092)+2 种基金the National Natural Science Foundation of China (31371892)the Program for New Century Excellent Talents in University (NCET-08-0485)the Program for New Century 151 Talents of Zhejiang Province, China
文摘Sclerotinia sclerotiorum is one of the most devastating necrotrophic phytopathogens. Virulence of the hyphae of this fungus at different ages varies significantly. Molecular mechanisms underlying this functional distinction are largely unknown. In this study, we confirmed the effect of mycelial culture time/age on virulence in two host plants and elucidated its molecular and morphological basis. The virulence of the S. sclerotiorum mycelia in plants dramatically decreases along with the increase of the mycelial age. Three-day-old mycelia lost the virulence in plants. Comparative proteomics analyses revealed that metabolism pathways were comprehensively reprogrammed to suppress the oxalic acid(OA) accumulation in old mycelia. The oxaloacetate acetylhydrolase(OAH), which catalyzes OA biosynthesis, was identified in the S. sclerotiorum genome. Both gene expression and protein accumulation of OAH in old mycelia were strongly repressed. Moreover, in planta OA accumulation was strikingly reduced in old mycelia-inoculated plants compared with young vegetative mycelia-inoculated plants. Furthermore, supply with 10 mmol L^(-1) OA enabled the old mycelia infect the host plants, demonstrating that loss of virulence of old mycelia is mainly caused by being unable to accumulate OA. Additionally, aerial mycelia started to develop from 0.5-day-old vegetative mycelia and dominated over 1-day-old mycelia grown on potato dextrose agar plates. They were much smaller in hypha diameter and grew significantly slower than young vegetative mycelia when subcultured, which did not maintain to progenies. Collectively, our results reveal that S. sclerotiorum aerial hyphae-dominant old mycelia fail to accumulate OA and thereby lose the virulence in host plants.
基金granted by the Key Project of Guangdong Province(013202,C31401)the Key Project of Natural Science Foundation of China(20031010)
文摘Effect of various counterions of tartrate on the crystallization of calcium oxalate in gel system was investigated using scanning electron microscopy and X-ray diffraction. Various tartrates with hydrogen (H2tart), sodium (Na2tart), potassium (K2tart), ammonium ((NH4)2tart), and a mixture of sodium and potassium cations (NaKtart) were considered. For H2tart, Na2tart, and (NH4)2tart, calcium oxalate dihydrate (COD) was induced. However, for K2tart and NaKtart, calcium oxalate trihydrate (COT) was obtained.
文摘Summary: The neuroproteetive effects of escitalopram oxalate in rats with chronic hypoperfusion and the possible mechanism were explored. Chronic hypoperfusion (2-VO) model was prepared and given escitalopram oxalate (experimental group) or PBS (control group) after 6 weeks. Eight weeks after the operation, Morris water maze test was carried out to evaluate the learning and memory ability of the rats. The cell proliferation, three-dimensional vascular distribution, cell morphological changes in ischemic area and the plasma vascular endothelial growth factor (VEGF) were detected to explore the possible mechanisms. (1) Morris water maze test showed that the escape latency in the experimental group was significantly shorter than in the control group, while the first quadrant swimming time in the experi- mental group was significantly longer than the control group (both P〈0.01). (2) Cerebrovascular confo- cal detection results showed that the inside diameter of capillaries was significantly less in the experi- mental group than in the control group; the vascular density was significantly increased in the experi- mental group and the total area of capillaries was also significantly increased in the experimental group as compared with the control group. (3) There was statistically significant difference in BrdU-positive cells in the ischemic brain tissue between the experimental group and the control group (P=0.003〈0.01). (4) VEGF concentrations in the plasma and the ischemic area were higher in the experimental group than in the control group (P〈0.05). It was concluded that escitalopram oxalate could significantly im- prove the learning and memory ability of the rats with chronic cerebral ischemia probably by the VEGF-mediated angiogenesis.
文摘Stannous oxalate was prepared efficiently and characterized by XRD and FT-IR. It exhibited higher catalytic activity and had profitable effect than tetrabutyl titanate and stannous octoate for the synthesis of polytrimethylene terephthalate (PTT) via esterification-route. Over this catalyst, the degree of esterification of pure terephthalic acid was up to 94.4% at 260 ℃ after 1.5 h,while the intrinsic viscosity and content of terminal carboxyl groups of the corresponding PTT polyester, polymerized at 260 ℃,60 Pa for 2 h, was 0.8950 dL/g and 15 mol/t, respectively. Stannous oxalate was a promising catalyst for the synthesis of PTT polyester.
基金This work was supported by the National Natural Science Foundation of China(20276050)Foundation for University Key Teacher by the Ministry of Educationthe Department of Science and Technology of Yunnan Province for the project on Technology Collaboration and Development in China.
文摘Diphenyl oxalate was synthesized from transesterification of dimethyl oxalate with phenol over TS-1 ( 2.5 wt% Ti ) catalyst. TS-1 catalyst, as a heterogeneous catalyst, showed excellent selectivity of diphenyl oxalate and methylphenyl oxalate compared with other homogeneous catalysts. Lewis acid sites on TS-1 catalyst were the active sites for transesterification of dimethyl oxalate with phenol. The high selectivity was closely related to the weak acid sites over TS-1.
基金Supported by the National Science and Technology Supporting Plan Through Contract, China(No.2011BAD22B06)the Zhejiang Provincial Natural Science Foundation, China(No. R1110089)+2 种基金the Fundamental Research Funds for the Central Univer-sities of China(No.2011FZA4012)the Research Fund for the Doctoral Program of Higher Education of China (No.20090101110034)the Zhejiang Provincial Key Science and Technology Innovation Team, China(No.2009R50012)
文摘Highly active and selective Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate(DMO) to ethylene glycol(EG) were successfully prepared by means of a convenient one-pot synthetic method with tetraethoxysi lane(TEOS) as the source of silica. XRD, H2-TPR, SEM, TEM, XRF and N2 physisorption measurements were performed to characterize the texture and structure of Cu/SiO2 catalysts with different copper loadings. The active components were highly dispersed on SiO2 supports. Furthermore, the coexistence of Cu0 and Cu+ contributed a lot to the excellent performance of Cu-TEOS catalysts. The DMO conversion reached 100% and the EG selectivity reached 95% at 498 K and 2 MPa with a high liquid hourly space velocity over the 27-Cu-TEOS catalyst with an actual cop per loading of 19.0%(mass fraction).
基金the financial support of the National Science Foundation of China (No. 21503137 and 61403263)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry (No. 20141685)+1 种基金the Liaoning Educational Department Foundation (No. L2015425)the Chinese Scholarship Council (No. 201604910230)
文摘The Cu/ZnO flower-like hierarchical porous structures were successfully synthesized via the cetyltrimethyl ammonium bromide(CTAB) assisted hydrothermal method. The morphology and structure as well as the catalytic performance for dimethyl oxalate(DMO) hydrogenation to ethylene glycol(EG) were investigated. Through annealing the zinc copper hydroxide carbonate(ZCHC) precursors, the Cu/ZnO flower-like hierarchical porous structures were obtained, which were assembled by a number of porous nanosheets. The catalyst made of these well-defined flower-like hierarchical porous structures with large specific surface area and effective gas diffusion path via the well-aligned porous structures showed higher EG selectivity and yield as compared to the Cu/ZnO catalyst obtained by conventional co-precipitation technique. The results indicated that the Cu/ZnO flower-like hierarchical porous structures have excellent potential application for manufacture of high performance catalysts.