The oxygen-ion conductor, the reducing agent, and the molten oxide slag containing electroactive matter were used as constituent of a galvanic cell. Metal was directly electroreduced from molten slag using a short-cir...The oxygen-ion conductor, the reducing agent, and the molten oxide slag containing electroactive matter were used as constituent of a galvanic cell. Metal was directly electroreduced from molten slag using a short-circuit galvanic cell. The following galvanic cell was assembled in the present experiment: graphite rod, [-O]Fe-C saturated |ZrO2 (MgO) | Cu(1) + (FeO)(slag) , and molybdenum wire. The FeO electroreduction reaction was studied through measuring short circuit current by controlling factors such as temperature, the FeO content in molten slags, and the external circuit resistance. An overall kinetics model was developed to describe the process of FeO electroreductiono It was found that the modeled curves were in good agreement with the experimental values. The new oxide reduction method in the metallurgy with controlled oxygen flow was proposed and the metallurgical theory with controlled oxygen flow was developed.展开更多
The current research focused on adjusting the low hydration activity of the metallurgical slag by phase reconstruction technique. Boron oxide was used as a phase regulator to improve the amorphous phase composition of...The current research focused on adjusting the low hydration activity of the metallurgical slag by phase reconstruction technique. Boron oxide was used as a phase regulator to improve the amorphous phase composition of the manganese slag, consequently enhancing its hydraulic activity. The effects of boron oxide dosage and calcination temperature on the manganese slag amorphous phase content were investigated. XRD and DTG were performed to analyze the hydration mechanism of the manganese slag powder and cement. Results show that, when boron oxide dosage is 15%, calcination temperature is 1 300℃, and holding time for 1 hour, the amorphous content of the modified manganese slag reaches 95% and its 28-day activity index reaches 8 1.7%. The manganese slag powder can then be used as cement or concrete admixtures for the building materials industry.展开更多
The coexistence theory of slag structure and it's application to calculation of the oxidizing capabilities of slag melts is described. It is shown that the law of mass action can be widely applied to the calculati...The coexistence theory of slag structure and it's application to calculation of the oxidizing capabilities of slag melts is described. It is shown that the law of mass action can be widely applied to the calculation of oxidizing capabilities of slag melts in combination with the coexistence theory of slag structure.For slag melts containing basic oxides FeO and MnO, their oxidizing capabilities can be expressed by N Fe tO =N FeO +6N Fe 2O 3 , while for slag melts containing basic oxides CaO, MgO, etc., in addition to FeO and MnO, their oxidizing capabilities can be given as N Fe tO =N FeO +6N Fe 2O 3 +8N Fe 3O 4 .展开更多
Due to the dispersed distribution of the titanium component in various mineral phases and very fine grain size, it is difficult to recover the titanium component from the slag. In order to utilize titanium resources, ...Due to the dispersed distribution of the titanium component in various mineral phases and very fine grain size, it is difficult to recover the titanium component from the slag. In order to utilize titanium resources, selective enriching and selective growing of the titanium component from the molten slag is expected. In this paper, the selection of the best titanium enrichment phase and the effect of oxidization on the enrichment of titanium by blowing air into the molten slag were studied. The results showed that through oxidizing the slag, the content of the perovskite phase increases while that of the other titanium-bearing mineral phases decreases until they disappear. Most titania resources were enriched into the perovskite phase and increase in size. The process of enrichment and growth is easily carried out.展开更多
A simple model for estimating the rate constant between CO2-CO gas and molten slag containing iron oxides was developed using optical basicity only. In this model, the temperature dependence of the rate constant can b...A simple model for estimating the rate constant between CO2-CO gas and molten slag containing iron oxides was developed using optical basicity only. In this model, the temperature dependence of the rate constant can be described by the Arrhenius law, and the activation energy can be expressed with a linear function of the slag's optical basicity. The model was applied to some molten slag systems, such as FeO, FeO-CaO, FeO-SiO2, FeO-Na2O, FeO-CaO-SiO2, FeO-SiO2-P2O5, FeO-SiOE-Na2O, and FeO-CaO-SiOE-P2O5. A comparison between the predicted results and measured data showed that the model worked well.展开更多
Oxidization mechanism in CaO-FeOx-SiO2 slag with high iron content was investigated by blowing oxygen into molten slag so as to oxidize Fe(Ⅱ). The relationship between Fe(Ⅱ) content and oxidizing time at differe...Oxidization mechanism in CaO-FeOx-SiO2 slag with high iron content was investigated by blowing oxygen into molten slag so as to oxidize Fe(Ⅱ). The relationship between Fe(Ⅱ) content and oxidizing time at different temperatures was obtained by chemical analysis. Microstructure of slag was observed by metallographic microscope and SEM. Phases compositions were ascertained by EDXS and XRD. Grain size and crystallizing quantity of magnetite(Fe3O4) were determined by image analyzer. The oxidizing kinetic equations were deduced. Confirmed by graphical construction method, Fe(Ⅱ) oxidizing reaction in CaO-FeOx-SiO2 slag system is of first order, and the reaction apparent energy Ea is 296.67kJ/mol in the pure oxygen and 340.30kJ/mol in air. The enrichment and crystal growth mechanism of magnetite(Fe3O4) phases were investigated. In oxidizing process, content of fayalite declines, while that of magnetite(Fe3O4) increases, and iron resources enrich into magnetite(Fe3O4) phase. All these provide a theoretical base for compressive utilizing of those slags.展开更多
Kinetics of non-isothermal precipitation process and crystal growth of perovskite phase in oxidized Ti-bearing slag were investigated. The oxidized slag was obtained by blowing the air into the molten Ti-bearing blast...Kinetics of non-isothermal precipitation process and crystal growth of perovskite phase in oxidized Ti-bearing slag were investigated. The oxidized slag was obtained by blowing the air into the molten Ti-bearing blast furnace slag through a lance. The experimental results show that the cooling rate has important effect on precipitation and growth of perovskite phase in oxidized slag;the lower cooling rate is in favor of not only the increase of the volume fraction of perovskite phase,but also the growth of perovskite phase grain sizes. The particle coarsening in non-isothermal process has important effect on the crystal growth of perovskite phase. The relative volume fraction of perovskite phase could be approximately described by JMAK equation,and the experiential expression of the average crystal radius of perovskite phase was also obtained.展开更多
According to the coexistence theory of slag structure melts, the oxidizing capability of the refining slag CaO-MgO-FeO- A12O3SiO2 is studied and the relationship between the mass action concentration of FeO (NFeO) and...According to the coexistence theory of slag structure melts, the oxidizing capability of the refining slag CaO-MgO-FeO- A12O3SiO2 is studied and the relationship between the mass action concentration of FeO (NFeO) and the activity of FetO (αFetO) for this slag is found to be as NFeo=0.656 1 αFetO. Furthermore, the calculating model of oxidizing capability of the refining slag BaO-CaO-MgO- FeOA12O3-SiO2 is established. A satisfactory result is obtained when using the above oxidizing capability relationship to calculate the desulphurizing capability of such refining BaO-slags.展开更多
An effective process for recycling lead from hazardous waste cathode ray tubes(CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, w...An effective process for recycling lead from hazardous waste cathode ray tubes(CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO–SiO_2–"FeO"–12wt%ZnO–3wt%Al_2O_3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO_2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO_2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared(FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO_2 mass ratio or increasing FeO content. The [FeO_6]-octahedra in the slag melt increase as the CaO/SiO_2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization(DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO_2 mass ratio and increasing FeO content.展开更多
The oxidation of alloying elements during the ESR of stainless steel has been studied. The model previously developed by WEI and Mitchell for the chemical reactions and mass transfer processes during ESR was applied t...The oxidation of alloying elements during the ESR of stainless steel has been studied. The model previously developed by WEI and Mitchell for the chemical reactions and mass transfer processes during ESR was applied to the remelting of the high Cr steel 1Cr18Ni9(Ti).The laboratory data for the unsteady state A.C.ESR were analyzed and dealt with by the model.When the remelting process reached a steady state,an oxidant(Fe_2O_3 powder)or a deoxidant(Ca-Si powder or metallic Ca)was added to the slag bath.The results showed that this model is applicable to the remelting of stainless steel rather precisely, and it is expected that the model may offer a reliable basis for the control of composition during practical ESR of high alloy steel. Also,the oxidation of Cr in the steel must be noticed when its content is high;but it is entirely possible to adjust the Cr content of ingot within a considerable range,using a special technique by means of the slag-metal reactions during the remelting.展开更多
Foamed glass-ceramics doped with cerium oxide(CeO_2)were successfully prepared from high-titanium blast furnace slag by one-step sintering.The influence of CeO_2 addition(1.5wt%–3.5wt%)on the crystalline phases,m...Foamed glass-ceramics doped with cerium oxide(CeO_2)were successfully prepared from high-titanium blast furnace slag by one-step sintering.The influence of CeO_2 addition(1.5wt%–3.5wt%)on the crystalline phases,microstructure,and properties of foamed glass-ceramics was studied.Results show that CeO_2 improves the stability of the glass phase and changes the two-dimensional crystallization mechanism into three-dimensional one.XRD analysis indicates the presence of Ca(Mg,Fe)Si_2O_6 and Ca(Ti,Mg,Al)(Si,Al)_2O_(6 )in all sintered samples.Added with CeO_2,Ti CeO_4 precipitates,and crystallinity increases,leading to increased thickness of pore walls and uniform pores.The comprehensive properties of foamed glass-ceramics are better than that of samples without CeO_2.In particular,the sample added with a suitable amount of CeO_2(2.5wt%)exhibits bulk density that is similar to and compressive strength(14.9 MPa)that is more than twice of foamed glass-ceramics without CeO_2.展开更多
The effects of MgO and TiO_2 on the viscosity, activation energy for viscous flow, and break-point temperature of titanium-bearing slag were studied. The correlation between viscosity and slag structure was analyzed b...The effects of MgO and TiO_2 on the viscosity, activation energy for viscous flow, and break-point temperature of titanium-bearing slag were studied. The correlation between viscosity and slag structure was analyzed by Fourier transform infrared(FTIR) spectroscopy. Subsequently, main phases in the slag and their content changes were investigated by X-ray diffraction and Factsage 6.4 software package. The results show that the viscosity decreases when the MgO content increases from 10.00wt% to 14.00wt%. Moreover, the break-point temperature increases, and the activation energy for viscous flow initially increases and subsequently decreases. In addition, with increasing TiO_2 content from 5.00wt% to 9.00wt%, the viscosity decreases, and the break-point temperature and activation energy for viscous flow initially decrease and subsequently increase. FTIR analyses reveal that the polymerization degree of complex viscous units in titanium-bearing slag decreases with increasing MgO and TiO_2 contents. The mechanism of viscosity variation was elucidated. The basic phase in experimental slags is melilite. Besides, as the MgO content increases, the amount of magnesia–alumina spinel in the slag increases. Similarly, the sum of pyroxene and perovskite phases in the slag increases with increasing TiO_2 content.展开更多
In view of the present problem of sulfur enrichment in the metallurgical recycling process of ladle furnace (LF) refining slag, a simple and efficient method of removing sulfur from this slag was proposed. The propo...In view of the present problem of sulfur enrichment in the metallurgical recycling process of ladle furnace (LF) refining slag, a simple and efficient method of removing sulfur from this slag was proposed. The proposed method is compatible with current steelmaking processes. Sulfur removal from LF refining slag for SPHC steel (manufactured at a certain steel plant in China) by blowing air in the hot state was studied by using hot-state experiments in a laboratory. The FactSage software, a carbon/sulfur analyzer, and scanning electron micros- copy in conjunction with energy-dispersive X-ray spectroscopy were used to test and analyze the sulfur removal effect and to investigate factors influencing sulfur removal rate. The results show that sulfur ions in LF refining slag can be oxidized into SO2 by O2 at high tempera- ture by blowing air into molten slag; SO2 production was observed to reach a maximum with a small amount of blown O2 when the tem- perature exceeded 1350℃. At 1370℃ and 1400℃, experimental LF refining slag is in the liquid state and exhibits good fluidity; under these conditions, the sulfur removal effect by blowing air is greater than 90wt% after 60 min. High temperature and large air flow rate are benefi- cial for removing sulfur from LF refining slag; compared with air flow rate, temperature has a greater strongly influences on the sulfur re- moval.展开更多
Large quantities of CO2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO2 emission reduction and comprehensive utilization of the...Large quantities of CO2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO2 emission reduction and comprehensive utilization of the solid waste. This paper describes a novel route for indirect mineral carbonation of titanium-bearing blast furnace (TBBF) slag, in which the TBBF slag is roasted with recyclable (NH4)2SO4 (AS) at low temperatures and converted into the sulphates of various valuable metals, including calcium, magnesium, aluminium and titanium. High value added Ti-and Al-rich products can be obtained through stepwise precipitation of the leaching solution from the roasted slag. The NH3 produced during the roasting is used to capture CO2 from flue gases. The NH4HCO3 and (NH4)2CO3 thus obtained are used to carbonate the CaSO4-containing leaching residue and MgSO4-rich leaching solution, respectively. In this study, the process parameters and efficiency for the roasting, carbonation and Ti and Al recovery were investigated in detail. The results showed that the sulfation ratios of calcium, magnesium, titanium and aluminium reached 92.6%, 87% and 84.4%, respectively, after roasting at an AS-to-TBBF slag mass ratio of 2:1 and 350℃ for 2 h. The leaching solution was subjected to hydrolysis at 102℃ for 4 h with a Ti hydrolysis ratio of 95.7%and the purity of TiO2 in the calcined hydrolysate reached 98 wt%. 99.7% of aluminium in the Ti-depleted leaching solution was precipitated by using NH3. The carbonation products of Ca and Mg were CaCO3 and (NH4)2Mg(CO3)2·4H2O, respectively. The latter can be decomposed into MgCO3 at 100-200℃ with simultaneous recovery of the NH3 for reuse. In this process, approximately 82.1% of Ca and 84.2% of Mg in the TBBF slag were transformed into stable carbonates and the total CO2 sequestration capacity per ton of TBBF slag reached up to 239.7 kg. The TiO2 obtained can be used directly as an end product, while the Al-rich precipitate and the two carbonation products can act, respectively, as raw materials for electrolytic aluminium, cement and light magnesium carbonate production for the replacement of natural resources.展开更多
This study proposes an efficient way to utilize all the chemical components of the basic oxygen fttrnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melti...This study proposes an efficient way to utilize all the chemical components of the basic oxygen fttrnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melting BOF slag by reducing it and separating out iron component in it, and the modified BOF slag was then quenched in water to form glasses with different basicities. The glasses were subsequently sintered in the temperature range of 600-1000℃ in air or nitrogen atmosphere for 1 h. The effects of different atmospheres on the physical and mechanical properties of sintered samples were studied by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) and by conducting experiment on evaluating the sintering shrinkage, water absorption and bulk density. It is found that the kinetics of the sintering process is significantly affected by sintering atmosphere. In particular, compared with sintering in air atmosphere, sintering in N2 atmosphere promotes the synergistic growth of pyroxene and melilite crystalline phases, which can contribute to better mechanical properties and denser microstructure.展开更多
The interaction between the slag containing titanium oxides(TiO2of 2.0 %-20.0%)and a MgO-C based refractory was investigated by immersion test.The relationship between TiO2 content in slag and corrosion rate of the re...The interaction between the slag containing titanium oxides(TiO2of 2.0 %-20.0%)and a MgO-C based refractory was investigated by immersion test.The relationship between TiO2 content in slag and corrosion rate of the refractory was studied.The microstructure and compositions of the corroded refractory were analyzed by SEM and X-ray diffraction.The corrosion mechanism of MgO-C based refractory in the slag containing titanium was proposed,and the effects of TiO2 content,slag basicity(ωCaO/ωSiO2)and temperature in molten bath on the corrosion rate of the refractory were obtained.展开更多
The penetration behavior of different kinds of coal ash slags into chrome corundum bricks was studied by cup test. As a preliminary attempt,the oxides of Fe2O3 and MgO were added into coal ash to reduce the erosion of...The penetration behavior of different kinds of coal ash slags into chrome corundum bricks was studied by cup test. As a preliminary attempt,the oxides of Fe2O3 and MgO were added into coal ash to reduce the erosion of refractories. Different cup tests were carried out to study coal slag erosion to the refractories. FactSage was used to simulate the phase diagram of the main chemical compositions in coal ash and in the refractories. Both results agreed with each other. The results show that the elements in coal slag can penetrate into bricks and the penetration deepens with the duration increasing; it is difficult for Fe but easier for Ca and Si to penetrate into bricks; different kinds of melting coal ashes penetrate into refractories differently and the penetration depth of silicon and calcium can be significantly reduced by adding oxides into coal ash.展开更多
The effects of additive agents and growth behavior of perovskite phase as well as temperature change of slag at semi industry scale test were studied. The results show that the increase of steel slag does good to tita...The effects of additive agents and growth behavior of perovskite phase as well as temperature change of slag at semi industry scale test were studied. The results show that the increase of steel slag does good to titania enrichment, however, it isn’t useful for the growth and coarsening of the perovskite phase. The additive Si-Fe powder can promote titania enrichment and make perovskite phase grow up easily. While air is blown into the molten slag, the reduced components in slag are oxidized and the released heat raises the temperature of slag.展开更多
Dry ball milling and wet ball milling were used to treat converter slag with particle size < 10 mm and the converter slag powder was stabilized by H_2O only and H_2O coupled with CO_2.respectively.Results showed th...Dry ball milling and wet ball milling were used to treat converter slag with particle size < 10 mm and the converter slag powder was stabilized by H_2O only and H_2O coupled with CO_2.respectively.Results showed that when CO_2 &H_2O was used,the free-calcium oxide(f-CaO) content in converter slag decreased significantly and after an-hour treatment the f-CaO content was reduced to 3%;however,when only treated by H_2O without CO_2, f-CaO needed 3-hour stabilization to decrease its content to 3%.When f-CaO in converter slag powder was treated by CO_2 &H_2O,its main reaction products were CaCO_3 and then Ca(OH)_2;however,when only H_2O was used, the f-CaO content decreased gently and the main products were Ca(OH)_2.展开更多
基金Item Sponsored by National Natural Science Foundation of China (50274008 ,50574011) Provincial Natural Science Foundationof Hubei Province of China (2005ABA019)
文摘The oxygen-ion conductor, the reducing agent, and the molten oxide slag containing electroactive matter were used as constituent of a galvanic cell. Metal was directly electroreduced from molten slag using a short-circuit galvanic cell. The following galvanic cell was assembled in the present experiment: graphite rod, [-O]Fe-C saturated |ZrO2 (MgO) | Cu(1) + (FeO)(slag) , and molybdenum wire. The FeO electroreduction reaction was studied through measuring short circuit current by controlling factors such as temperature, the FeO content in molten slags, and the external circuit resistance. An overall kinetics model was developed to describe the process of FeO electroreductiono It was found that the modeled curves were in good agreement with the experimental values. The new oxide reduction method in the metallurgy with controlled oxygen flow was proposed and the metallurgical theory with controlled oxygen flow was developed.
基金Funded by the National High-tech Research and Development Prograrn of China(863 Program)(No.2012AA06A112)the National Natural Science Foundation of China(No.51162004)the Guangxi Science and Technology Development Plan(Nos.12118014-3D,12118019-2-15,1348011-2)
文摘The current research focused on adjusting the low hydration activity of the metallurgical slag by phase reconstruction technique. Boron oxide was used as a phase regulator to improve the amorphous phase composition of the manganese slag, consequently enhancing its hydraulic activity. The effects of boron oxide dosage and calcination temperature on the manganese slag amorphous phase content were investigated. XRD and DTG were performed to analyze the hydration mechanism of the manganese slag powder and cement. Results show that, when boron oxide dosage is 15%, calcination temperature is 1 300℃, and holding time for 1 hour, the amorphous content of the modified manganese slag reaches 95% and its 28-day activity index reaches 8 1.7%. The manganese slag powder can then be used as cement or concrete admixtures for the building materials industry.
文摘The coexistence theory of slag structure and it's application to calculation of the oxidizing capabilities of slag melts is described. It is shown that the law of mass action can be widely applied to the calculation of oxidizing capabilities of slag melts in combination with the coexistence theory of slag structure.For slag melts containing basic oxides FeO and MnO, their oxidizing capabilities can be expressed by N Fe tO =N FeO +6N Fe 2O 3 , while for slag melts containing basic oxides CaO, MgO, etc., in addition to FeO and MnO, their oxidizing capabilities can be given as N Fe tO =N FeO +6N Fe 2O 3 +8N Fe 3O 4 .
基金This work was financially supported by the National Natural Science Foundation of China (No.50234040)
文摘Due to the dispersed distribution of the titanium component in various mineral phases and very fine grain size, it is difficult to recover the titanium component from the slag. In order to utilize titanium resources, selective enriching and selective growing of the titanium component from the molten slag is expected. In this paper, the selection of the best titanium enrichment phase and the effect of oxidization on the enrichment of titanium by blowing air into the molten slag were studied. The results showed that through oxidizing the slag, the content of the perovskite phase increases while that of the other titanium-bearing mineral phases decreases until they disappear. Most titania resources were enriched into the perovskite phase and increase in size. The process of enrichment and growth is easily carried out.
基金supported by the National Natural Science Foundation of China (Nos. 50834007, 50874128, and 50674012)
文摘A simple model for estimating the rate constant between CO2-CO gas and molten slag containing iron oxides was developed using optical basicity only. In this model, the temperature dependence of the rate constant can be described by the Arrhenius law, and the activation energy can be expressed with a linear function of the slag's optical basicity. The model was applied to some molten slag systems, such as FeO, FeO-CaO, FeO-SiO2, FeO-Na2O, FeO-CaO-SiO2, FeO-SiO2-P2O5, FeO-SiOE-Na2O, and FeO-CaO-SiOE-P2O5. A comparison between the predicted results and measured data showed that the model worked well.
基金Key Project(50234040) supported by the National Natural Science Foundation of China
文摘Oxidization mechanism in CaO-FeOx-SiO2 slag with high iron content was investigated by blowing oxygen into molten slag so as to oxidize Fe(Ⅱ). The relationship between Fe(Ⅱ) content and oxidizing time at different temperatures was obtained by chemical analysis. Microstructure of slag was observed by metallographic microscope and SEM. Phases compositions were ascertained by EDXS and XRD. Grain size and crystallizing quantity of magnetite(Fe3O4) were determined by image analyzer. The oxidizing kinetic equations were deduced. Confirmed by graphical construction method, Fe(Ⅱ) oxidizing reaction in CaO-FeOx-SiO2 slag system is of first order, and the reaction apparent energy Ea is 296.67kJ/mol in the pure oxygen and 340.30kJ/mol in air. The enrichment and crystal growth mechanism of magnetite(Fe3O4) phases were investigated. In oxidizing process, content of fayalite declines, while that of magnetite(Fe3O4) increases, and iron resources enrich into magnetite(Fe3O4) phase. All these provide a theoretical base for compressive utilizing of those slags.
基金Project supported by the Postdoctoral Science Foundation of Central South University, ChinaProject(76112037) by the Science Foundation of Central South University, China
文摘Kinetics of non-isothermal precipitation process and crystal growth of perovskite phase in oxidized Ti-bearing slag were investigated. The oxidized slag was obtained by blowing the air into the molten Ti-bearing blast furnace slag through a lance. The experimental results show that the cooling rate has important effect on precipitation and growth of perovskite phase in oxidized slag;the lower cooling rate is in favor of not only the increase of the volume fraction of perovskite phase,but also the growth of perovskite phase grain sizes. The particle coarsening in non-isothermal process has important effect on the crystal growth of perovskite phase. The relative volume fraction of perovskite phase could be approximately described by JMAK equation,and the experiential expression of the average crystal radius of perovskite phase was also obtained.
基金The authors thank for the instrUction of Prof. Jian Zhang of the University of Science and Technology Beliing and the financia
文摘According to the coexistence theory of slag structure melts, the oxidizing capability of the refining slag CaO-MgO-FeO- A12O3SiO2 is studied and the relationship between the mass action concentration of FeO (NFeO) and the activity of FetO (αFetO) for this slag is found to be as NFeo=0.656 1 αFetO. Furthermore, the calculating model of oxidizing capability of the refining slag BaO-CaO-MgO- FeOA12O3-SiO2 is established. A satisfactory result is obtained when using the above oxidizing capability relationship to calculate the desulphurizing capability of such refining BaO-slags.
基金financially supported by the National Natural Science Foundation of China (Nos. 51374066 and 51304047)the National Key Technologies R&D Program (No. 2014BAC03B07)the Industrial Research Projects in Liaoning Province, China (Nos. 2012223002 and 2014020037)
文摘An effective process for recycling lead from hazardous waste cathode ray tubes(CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO–SiO_2–"FeO"–12wt%ZnO–3wt%Al_2O_3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO_2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO_2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared(FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO_2 mass ratio or increasing FeO content. The [FeO_6]-octahedra in the slag melt increase as the CaO/SiO_2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization(DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO_2 mass ratio and increasing FeO content.
文摘The oxidation of alloying elements during the ESR of stainless steel has been studied. The model previously developed by WEI and Mitchell for the chemical reactions and mass transfer processes during ESR was applied to the remelting of the high Cr steel 1Cr18Ni9(Ti).The laboratory data for the unsteady state A.C.ESR were analyzed and dealt with by the model.When the remelting process reached a steady state,an oxidant(Fe_2O_3 powder)or a deoxidant(Ca-Si powder or metallic Ca)was added to the slag bath.The results showed that this model is applicable to the remelting of stainless steel rather precisely, and it is expected that the model may offer a reliable basis for the control of composition during practical ESR of high alloy steel. Also,the oxidation of Cr in the steel must be noticed when its content is high;but it is entirely possible to adjust the Cr content of ingot within a considerable range,using a special technique by means of the slag-metal reactions during the remelting.
基金the Science and Technology Support Projects of Sichuan (No.2014GZ0011)the Industry Promotion Projects of Panzhihua in China (No.2013CY-C-2) for their financial support
文摘Foamed glass-ceramics doped with cerium oxide(CeO_2)were successfully prepared from high-titanium blast furnace slag by one-step sintering.The influence of CeO_2 addition(1.5wt%–3.5wt%)on the crystalline phases,microstructure,and properties of foamed glass-ceramics was studied.Results show that CeO_2 improves the stability of the glass phase and changes the two-dimensional crystallization mechanism into three-dimensional one.XRD analysis indicates the presence of Ca(Mg,Fe)Si_2O_6 and Ca(Ti,Mg,Al)(Si,Al)_2O_(6 )in all sintered samples.Added with CeO_2,Ti CeO_4 precipitates,and crystallinity increases,leading to increased thickness of pore walls and uniform pores.The comprehensive properties of foamed glass-ceramics are better than that of samples without CeO_2.In particular,the sample added with a suitable amount of CeO_2(2.5wt%)exhibits bulk density that is similar to and compressive strength(14.9 MPa)that is more than twice of foamed glass-ceramics without CeO_2.
基金financial support by the Fundamental Research Funds for the Central Universities (No. N130602003)National High Technology Research and Development Program of China (No. 2012AA062302)the National Natural Science Foundation of China (No. 51574067)
文摘The effects of MgO and TiO_2 on the viscosity, activation energy for viscous flow, and break-point temperature of titanium-bearing slag were studied. The correlation between viscosity and slag structure was analyzed by Fourier transform infrared(FTIR) spectroscopy. Subsequently, main phases in the slag and their content changes were investigated by X-ray diffraction and Factsage 6.4 software package. The results show that the viscosity decreases when the MgO content increases from 10.00wt% to 14.00wt%. Moreover, the break-point temperature increases, and the activation energy for viscous flow initially increases and subsequently decreases. In addition, with increasing TiO_2 content from 5.00wt% to 9.00wt%, the viscosity decreases, and the break-point temperature and activation energy for viscous flow initially decrease and subsequently increase. FTIR analyses reveal that the polymerization degree of complex viscous units in titanium-bearing slag decreases with increasing MgO and TiO_2 contents. The mechanism of viscosity variation was elucidated. The basic phase in experimental slags is melilite. Besides, as the MgO content increases, the amount of magnesia–alumina spinel in the slag increases. Similarly, the sum of pyroxene and perovskite phases in the slag increases with increasing TiO_2 content.
基金supported by China Postdoctoral Science Foundation (Nos. 2014M560890 and 2015T80039)the National Natural Science Foundation of China (No. 51404022)
文摘In view of the present problem of sulfur enrichment in the metallurgical recycling process of ladle furnace (LF) refining slag, a simple and efficient method of removing sulfur from this slag was proposed. The proposed method is compatible with current steelmaking processes. Sulfur removal from LF refining slag for SPHC steel (manufactured at a certain steel plant in China) by blowing air in the hot state was studied by using hot-state experiments in a laboratory. The FactSage software, a carbon/sulfur analyzer, and scanning electron micros- copy in conjunction with energy-dispersive X-ray spectroscopy were used to test and analyze the sulfur removal effect and to investigate factors influencing sulfur removal rate. The results show that sulfur ions in LF refining slag can be oxidized into SO2 by O2 at high tempera- ture by blowing air into molten slag; SO2 production was observed to reach a maximum with a small amount of blown O2 when the tem- perature exceeded 1350℃. At 1370℃ and 1400℃, experimental LF refining slag is in the liquid state and exhibits good fluidity; under these conditions, the sulfur removal effect by blowing air is greater than 90wt% after 60 min. High temperature and large air flow rate are benefi- cial for removing sulfur from LF refining slag; compared with air flow rate, temperature has a greater strongly influences on the sulfur re- moval.
基金Supported by the National Key Projects for Fundamental Research and Development of China(2016YFB0600904)
文摘Large quantities of CO2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO2 emission reduction and comprehensive utilization of the solid waste. This paper describes a novel route for indirect mineral carbonation of titanium-bearing blast furnace (TBBF) slag, in which the TBBF slag is roasted with recyclable (NH4)2SO4 (AS) at low temperatures and converted into the sulphates of various valuable metals, including calcium, magnesium, aluminium and titanium. High value added Ti-and Al-rich products can be obtained through stepwise precipitation of the leaching solution from the roasted slag. The NH3 produced during the roasting is used to capture CO2 from flue gases. The NH4HCO3 and (NH4)2CO3 thus obtained are used to carbonate the CaSO4-containing leaching residue and MgSO4-rich leaching solution, respectively. In this study, the process parameters and efficiency for the roasting, carbonation and Ti and Al recovery were investigated in detail. The results showed that the sulfation ratios of calcium, magnesium, titanium and aluminium reached 92.6%, 87% and 84.4%, respectively, after roasting at an AS-to-TBBF slag mass ratio of 2:1 and 350℃ for 2 h. The leaching solution was subjected to hydrolysis at 102℃ for 4 h with a Ti hydrolysis ratio of 95.7%and the purity of TiO2 in the calcined hydrolysate reached 98 wt%. 99.7% of aluminium in the Ti-depleted leaching solution was precipitated by using NH3. The carbonation products of Ca and Mg were CaCO3 and (NH4)2Mg(CO3)2·4H2O, respectively. The latter can be decomposed into MgCO3 at 100-200℃ with simultaneous recovery of the NH3 for reuse. In this process, approximately 82.1% of Ca and 84.2% of Mg in the TBBF slag were transformed into stable carbonates and the total CO2 sequestration capacity per ton of TBBF slag reached up to 239.7 kg. The TiO2 obtained can be used directly as an end product, while the Al-rich precipitate and the two carbonation products can act, respectively, as raw materials for electrolytic aluminium, cement and light magnesium carbonate production for the replacement of natural resources.
基金financially supported by the State Key Program of National Natural Science Foundation of China(No.51034008)the Fundamental Research Funds for the Central Universities of China(No.2302010FRF-MP-10006B)
文摘This study proposes an efficient way to utilize all the chemical components of the basic oxygen fttrnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melting BOF slag by reducing it and separating out iron component in it, and the modified BOF slag was then quenched in water to form glasses with different basicities. The glasses were subsequently sintered in the temperature range of 600-1000℃ in air or nitrogen atmosphere for 1 h. The effects of different atmospheres on the physical and mechanical properties of sintered samples were studied by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) and by conducting experiment on evaluating the sintering shrinkage, water absorption and bulk density. It is found that the kinetics of the sintering process is significantly affected by sintering atmosphere. In particular, compared with sintering in air atmosphere, sintering in N2 atmosphere promotes the synergistic growth of pyroxene and melilite crystalline phases, which can contribute to better mechanical properties and denser microstructure.
文摘The interaction between the slag containing titanium oxides(TiO2of 2.0 %-20.0%)and a MgO-C based refractory was investigated by immersion test.The relationship between TiO2 content in slag and corrosion rate of the refractory was studied.The microstructure and compositions of the corroded refractory were analyzed by SEM and X-ray diffraction.The corrosion mechanism of MgO-C based refractory in the slag containing titanium was proposed,and the effects of TiO2 content,slag basicity(ωCaO/ωSiO2)and temperature in molten bath on the corrosion rate of the refractory were obtained.
文摘The penetration behavior of different kinds of coal ash slags into chrome corundum bricks was studied by cup test. As a preliminary attempt,the oxides of Fe2O3 and MgO were added into coal ash to reduce the erosion of refractories. Different cup tests were carried out to study coal slag erosion to the refractories. FactSage was used to simulate the phase diagram of the main chemical compositions in coal ash and in the refractories. Both results agreed with each other. The results show that the elements in coal slag can penetrate into bricks and the penetration deepens with the duration increasing; it is difficult for Fe but easier for Ca and Si to penetrate into bricks; different kinds of melting coal ashes penetrate into refractories differently and the penetration depth of silicon and calcium can be significantly reduced by adding oxides into coal ash.
基金Project(50234040) supported by the National Natural Science Foundation of China
文摘The effects of additive agents and growth behavior of perovskite phase as well as temperature change of slag at semi industry scale test were studied. The results show that the increase of steel slag does good to titania enrichment, however, it isn’t useful for the growth and coarsening of the perovskite phase. The additive Si-Fe powder can promote titania enrichment and make perovskite phase grow up easily. While air is blown into the molten slag, the reduced components in slag are oxidized and the released heat raises the temperature of slag.
文摘Dry ball milling and wet ball milling were used to treat converter slag with particle size < 10 mm and the converter slag powder was stabilized by H_2O only and H_2O coupled with CO_2.respectively.Results showed that when CO_2 &H_2O was used,the free-calcium oxide(f-CaO) content in converter slag decreased significantly and after an-hour treatment the f-CaO content was reduced to 3%;however,when only treated by H_2O without CO_2, f-CaO needed 3-hour stabilization to decrease its content to 3%.When f-CaO in converter slag powder was treated by CO_2 &H_2O,its main reaction products were CaCO_3 and then Ca(OH)_2;however,when only H_2O was used, the f-CaO content decreased gently and the main products were Ca(OH)_2.