The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitatio...The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitation method with metal-nitrates as starting materials and mixed alkali (NaOH and Na2CO3) as a precipitating agent. The formation process of LSCCF from the precursors was monitored by TG-DSC, and the crystal structure and particles morphology of the precursors which were calcined at 600, 800, 1000 ℃ for 3 h were characterized using XRD, SEM technologies. Compared with the solid state reaction of constituent oxides, when the pH value of the precipitating solution was in the range of 9.1~9.5, the LSCCF powders from the precursors caclined at 800 ℃ for 3 h had high purity, homogeneous and single perovskite phase. The electrical conductivity of the LSCCF samples sintered at 1200 ℃ for 3 h, which was measured as a function of temperatures from 100 to 800 ℃ by DC four-probe method in air, decreased with x from 0.05 to 0.20. The value of electrical conductivity was almost equal because of Ca2+, Sr2+ co-dopant resulting in the 'mix effect' while x=0.10 or 0.15. The electrical conductivity of all doped samples was higher than 100 S·cm-1 at intermediate temperatures from 500 to 800 ℃, and there was good compatibility between the LSCCF cathode and Ce0.8Sm0.2O2 electrolyte.展开更多
CO self-poisoning and slow surface kinetics pose major challenges to a CO oxidation catalyst that should work at ambient temperature.Furthermore,the presence of moisture would cause passivation of the catalyst A highl...CO self-poisoning and slow surface kinetics pose major challenges to a CO oxidation catalyst that should work at ambient temperature.Furthermore,the presence of moisture would cause passivation of the catalyst A highly active ceria promoted Pt catalyst(4%Pt-12%CeO_2/SiO_2;conversion≥99%at low( 500 ppm) and high( 2500 ppm) CO concentrations was developed for CO oxidation at ambient temperature in humid air.Catalyst preparation variables such as Pt and CeO_2 loading,ceria deposition method,drying and calcination conditions for the ceria and Pt precursors were optimized experimentally.The activity was correlated with surface properties using CO/H_2 chemisorption,O_2-H_2 titration,X-ray diffraction and BET surface area analysis.The method of CeO_2 deposition had a significant impact on the catalytic activity.CeO_2 deposition by impregnation resulted in a catalyst that was three times more active than that prepared by deposition precipitation or CeO_2grafting.O_2-H_2 titration results revealed that the close association of ceria and Pt in the case of CeO_2deposition by impregnation resulted in higher activity.The catalyst support used was also crucial as a silica supported catalyst was five times more active than an alumina supported catalyst.The particle size and pore structure of the catalyst support were also crucial as the reaction was diffusion controlled.The drying and calcination conditions of the ceria and Pt precursors also played a crucial role in determining the catalytic activity.The Pt-CeO_2/SiO_2 catalysts with Pt 2.5 wt%and CeO_2 15 wt%were highly active(TOF 0.02 s^(-1)) and stable(conversion 99%after 15 h) at ambient conditions.展开更多
A series of layered mixed oxides La 4BaCu 5-x Mn x O 13+λ ( x =0—5) was prepared, characterized and used as catalysts for NO+CO reaction. It was found that all the samples were single phase having a structure with f...A series of layered mixed oxides La 4BaCu 5-x Mn x O 13+λ ( x =0—5) was prepared, characterized and used as catalysts for NO+CO reaction. It was found that all the samples were single phase having a structure with five layered perovskite. La 4BaCu 2Mn 3O 13+λ showed the highest activity in the title reaction, this could be attributed to the synergetic effect between Cu and Mn. The results of TPR, TPD and excess oxygen investigations confirmed that the Cu ion would be the active center. The displacement of the Cu ion by Mn caused the Cu ion to be more easily reducible and more content of excess oxygen, and it was beneficial to the activity of the catalyst. The reaction mechanism was also proposed.展开更多
Electrochemical conversion of nitrate(NO_(3)~-) to ammonia(NH_(3)) can target two birds with one stone well, in NO_(3)^(-)-containing sewage remediation and sustainable NH_(3) production. However, single metalbased ca...Electrochemical conversion of nitrate(NO_(3)~-) to ammonia(NH_(3)) can target two birds with one stone well, in NO_(3)^(-)-containing sewage remediation and sustainable NH_(3) production. However, single metalbased catalysts are difficult to drive high-efficient NO_(3)~- removal due to the multi-electron transfer steps.Herein, we present a tandem catalyst with simple structure, Cu-Co binary metal oxides(Cu-Co-O), by engineering intermediate phases as catalytic active species for NO_(3)~- conversion. Electrochemical evaluation,X-ray photoelectron spectroscopy, and in situ Raman spectra together suggest that the newly-generated Cu-based phases was prone to NO_(3)~- to NO_(2)~- conversion, then NO_(2)~- was reduced to NH_(3) on Co-based species. At an applied potential of -1.1 V vs. saturated calomel electrode, the Cu-Co-O catalyst achieved NO_(3)~- -N removal of 90% and NH_(3) faradaic efficiency of 81% for 120 min in 100 m L of 50 mg/L NO_(3)~- -N,consuming only 0.69 k Wh/mol in a two-electrode system. This study provides a facile and efficient engineering strategy for developing high-performance catalysts for electrocatalytic nitrate conversion.展开更多
Diisopropylidenated α-D-glucofuranose (1) was oxidated with CrO3-pyridine complex. Oxidated product and its hydrate were separated and were reduced together to synthesize diisopropylidenated α-D-allofuranose ( 3...Diisopropylidenated α-D-glucofuranose (1) was oxidated with CrO3-pyridine complex. Oxidated product and its hydrate were separated and were reduced together to synthesize diisopropylidenated α-D-allofuranose ( 3). The yield of 3 increased by 8% than that with only oxidated product as reduction substrate. Benzoylated derivative of 3 was selectively nydrolyzed and dimesylated to synthesize 3-O-benzoyl-1 .2- O- isopropylidene-α-D-allofuranose ( 5 ) and its dimesylated derivative respectively. The overall yield of 5 from 1 was 36%. Each step and final products were analyzed by ^1H-NMR spectra and other methods. The experiments showed that the influence of acetic acid concentration on selective hydrolysis was obvious. The hydrolysis yield was 81.8%. Oxidation. reduction and other procedures were practical and had application potential.展开更多
The mixed oxides, including LaBa\-2Cu\-3O\-7, LaBaCu\-2O\-5, La\-4BaCu\-5O 12 with perovskite structure, were prepared. The catalysts were characterized by means of chemical analysis, XRD, H\-2_TPR. It was found that ...The mixed oxides, including LaBa\-2Cu\-3O\-7, LaBaCu\-2O\-5, La\-4BaCu\-5O 12 with perovskite structure, were prepared. The catalysts were characterized by means of chemical analysis, XRD, H\-2_TPR. It was found that their structures were layered ABO\-3 perovskite structure and they were the active catalysts for the NO reduction by CO. The existance of Cu 3+ is an important factor to give the catalysts a high activity for the NO reduction by CO.展开更多
Promoting the oxygen reduction reaction(ORR)is critical for commercialization of intermediate-temperature solid oxide fuel cells(IT-SOFCs),where Sr_(2)Fe_(1.5)Mo_(0.5)O_(6)−δ(SFM)is a promising cathode by working as ...Promoting the oxygen reduction reaction(ORR)is critical for commercialization of intermediate-temperature solid oxide fuel cells(IT-SOFCs),where Sr_(2)Fe_(1.5)Mo_(0.5)O_(6)−δ(SFM)is a promising cathode by working as a mixed ionic and electronic conductor.In this work,doping of In^(3+)greatly increases the oxygen vacancy concentration and the content of adsorbed oxygen species in Sr_(2)Fe_(1.5)Mo_(0.5−x)InxO_(6−δ)(SFMInx),and thus effectively promotes the ORR performance.As a typical example,SFMIn_(0.1)reduces the polarization resistance(R_(p))from 0.089 to 0.046Ω∙cm^(2)at 800°C,which is superior to those doped with other metal elements.In addition,SFMIn0.1 increases the peak power density from 0.92 to 1.47 W∙cm^(−2)at 800°C with humidified H_(2)as the fuel,indicating that In3+doping at the Mo site can effectively improve the performance of SOFC cathode material.展开更多
基金the National High-Tech Development Plan (2006AA05Z417)the Natural Science Foundation of Lia-oning Province (20062145)the Education department of Liaoning Province (05L073)
文摘The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitation method with metal-nitrates as starting materials and mixed alkali (NaOH and Na2CO3) as a precipitating agent. The formation process of LSCCF from the precursors was monitored by TG-DSC, and the crystal structure and particles morphology of the precursors which were calcined at 600, 800, 1000 ℃ for 3 h were characterized using XRD, SEM technologies. Compared with the solid state reaction of constituent oxides, when the pH value of the precipitating solution was in the range of 9.1~9.5, the LSCCF powders from the precursors caclined at 800 ℃ for 3 h had high purity, homogeneous and single perovskite phase. The electrical conductivity of the LSCCF samples sintered at 1200 ℃ for 3 h, which was measured as a function of temperatures from 100 to 800 ℃ by DC four-probe method in air, decreased with x from 0.05 to 0.20. The value of electrical conductivity was almost equal because of Ca2+, Sr2+ co-dopant resulting in the 'mix effect' while x=0.10 or 0.15. The electrical conductivity of all doped samples was higher than 100 S·cm-1 at intermediate temperatures from 500 to 800 ℃, and there was good compatibility between the LSCCF cathode and Ce0.8Sm0.2O2 electrolyte.
基金supported by US Army contract(W56HZV-05-C0686) at Auburn University administered through TARDEC
文摘CO self-poisoning and slow surface kinetics pose major challenges to a CO oxidation catalyst that should work at ambient temperature.Furthermore,the presence of moisture would cause passivation of the catalyst A highly active ceria promoted Pt catalyst(4%Pt-12%CeO_2/SiO_2;conversion≥99%at low( 500 ppm) and high( 2500 ppm) CO concentrations was developed for CO oxidation at ambient temperature in humid air.Catalyst preparation variables such as Pt and CeO_2 loading,ceria deposition method,drying and calcination conditions for the ceria and Pt precursors were optimized experimentally.The activity was correlated with surface properties using CO/H_2 chemisorption,O_2-H_2 titration,X-ray diffraction and BET surface area analysis.The method of CeO_2 deposition had a significant impact on the catalytic activity.CeO_2 deposition by impregnation resulted in a catalyst that was three times more active than that prepared by deposition precipitation or CeO_2grafting.O_2-H_2 titration results revealed that the close association of ceria and Pt in the case of CeO_2deposition by impregnation resulted in higher activity.The catalyst support used was also crucial as a silica supported catalyst was five times more active than an alumina supported catalyst.The particle size and pore structure of the catalyst support were also crucial as the reaction was diffusion controlled.The drying and calcination conditions of the ceria and Pt precursors also played a crucial role in determining the catalytic activity.The Pt-CeO_2/SiO_2 catalysts with Pt 2.5 wt%and CeO_2 15 wt%were highly active(TOF 0.02 s^(-1)) and stable(conversion 99%after 15 h) at ambient conditions.
文摘A series of layered mixed oxides La 4BaCu 5-x Mn x O 13+λ ( x =0—5) was prepared, characterized and used as catalysts for NO+CO reaction. It was found that all the samples were single phase having a structure with five layered perovskite. La 4BaCu 2Mn 3O 13+λ showed the highest activity in the title reaction, this could be attributed to the synergetic effect between Cu and Mn. The results of TPR, TPD and excess oxygen investigations confirmed that the Cu ion would be the active center. The displacement of the Cu ion by Mn caused the Cu ion to be more easily reducible and more content of excess oxygen, and it was beneficial to the activity of the catalyst. The reaction mechanism was also proposed.
基金supported by National Natural Science Foundation of China (Nos.52131003 and 42007180)Special Research Assistant Program of Chinese Academy of Science, Natural Science Foundation of Chongqing (No.cstc2020jcyj-msxm X0775)+1 种基金Scientific Research Instrument Development Project of Chinese Academy of Sciences (No.YJKYYQ20200044)Outstanding Scientist of Chongqing Talent Program (No.CQYC20210101288)。
文摘Electrochemical conversion of nitrate(NO_(3)~-) to ammonia(NH_(3)) can target two birds with one stone well, in NO_(3)^(-)-containing sewage remediation and sustainable NH_(3) production. However, single metalbased catalysts are difficult to drive high-efficient NO_(3)~- removal due to the multi-electron transfer steps.Herein, we present a tandem catalyst with simple structure, Cu-Co binary metal oxides(Cu-Co-O), by engineering intermediate phases as catalytic active species for NO_(3)~- conversion. Electrochemical evaluation,X-ray photoelectron spectroscopy, and in situ Raman spectra together suggest that the newly-generated Cu-based phases was prone to NO_(3)~- to NO_(2)~- conversion, then NO_(2)~- was reduced to NH_(3) on Co-based species. At an applied potential of -1.1 V vs. saturated calomel electrode, the Cu-Co-O catalyst achieved NO_(3)~- -N removal of 90% and NH_(3) faradaic efficiency of 81% for 120 min in 100 m L of 50 mg/L NO_(3)~- -N,consuming only 0.69 k Wh/mol in a two-electrode system. This study provides a facile and efficient engineering strategy for developing high-performance catalysts for electrocatalytic nitrate conversion.
基金Supported by Tianjin Natural Science Foundation ( No. 05YFJMJC09600).
文摘Diisopropylidenated α-D-glucofuranose (1) was oxidated with CrO3-pyridine complex. Oxidated product and its hydrate were separated and were reduced together to synthesize diisopropylidenated α-D-allofuranose ( 3). The yield of 3 increased by 8% than that with only oxidated product as reduction substrate. Benzoylated derivative of 3 was selectively nydrolyzed and dimesylated to synthesize 3-O-benzoyl-1 .2- O- isopropylidene-α-D-allofuranose ( 5 ) and its dimesylated derivative respectively. The overall yield of 5 from 1 was 36%. Each step and final products were analyzed by ^1H-NMR spectra and other methods. The experiments showed that the influence of acetic acid concentration on selective hydrolysis was obvious. The hydrolysis yield was 81.8%. Oxidation. reduction and other procedures were practical and had application potential.
文摘The mixed oxides, including LaBa\-2Cu\-3O\-7, LaBaCu\-2O\-5, La\-4BaCu\-5O 12 with perovskite structure, were prepared. The catalysts were characterized by means of chemical analysis, XRD, H\-2_TPR. It was found that their structures were layered ABO\-3 perovskite structure and they were the active catalysts for the NO reduction by CO. The existance of Cu 3+ is an important factor to give the catalysts a high activity for the NO reduction by CO.
基金acknowledge the Autonomous Region Key Research Project(No.2022D02D31)the Graduate Education Innovation Project(No.XJ2022G046)。
文摘Promoting the oxygen reduction reaction(ORR)is critical for commercialization of intermediate-temperature solid oxide fuel cells(IT-SOFCs),where Sr_(2)Fe_(1.5)Mo_(0.5)O_(6)−δ(SFM)is a promising cathode by working as a mixed ionic and electronic conductor.In this work,doping of In^(3+)greatly increases the oxygen vacancy concentration and the content of adsorbed oxygen species in Sr_(2)Fe_(1.5)Mo_(0.5−x)InxO_(6−δ)(SFMInx),and thus effectively promotes the ORR performance.As a typical example,SFMIn_(0.1)reduces the polarization resistance(R_(p))from 0.089 to 0.046Ω∙cm^(2)at 800°C,which is superior to those doped with other metal elements.In addition,SFMIn0.1 increases the peak power density from 0.92 to 1.47 W∙cm^(−2)at 800°C with humidified H_(2)as the fuel,indicating that In3+doping at the Mo site can effectively improve the performance of SOFC cathode material.