期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
Impacts of continuously regenerating trap and particle oxidation catalyst on the NO_2 and particulate matter emissions emitted from diesel engine 被引量:11
1
作者 Zhihua Liu Yunshan Ge +5 位作者 Jianwei Tan Chao He Asad Naeem Shah Yan Ding LinxiaoYu Wei Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第4期624-631,共8页
Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to e... Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to evaluate their effects on NO2, smoke and particle number emissions. The results showed that the application of the after-treatments increased the emission ratios of NO2/NOx significantly. The results of smoke emissions and particle number (PN) emissions indicated that both CRDPFs had sufficient capacity to remove more than 90% of total particulate matter (PM) and more than 97% of solid particles. However, the POC was able to remove the organic components of total PM, and only partially to remove the carbonaceous particles with size less than 30 nm. The negligible effects of POC on larger particles were observed due to its honeycomb structure leads to an inadequate residence time to oxidize the solid particles or trap them. The particles removal efficiencies of CRDPFs had high degree of correlations with the emission ratio of NO2/NOx. The PN emission results from two CRDPFs indicated that more NO2 generating in diesel oxidation catalyst section could obtain the higher removal efficiency of solid particles. However this also increased the risk of NO2 exposure in atmosphere. 展开更多
关键词 continuously regenerating diesel particulate filter particles oxidation catalyst particle number diesel engine size distribution
原文传递
An assessment of how distance and diesel oxidation catalyst will impact thermal decomposition behaviors of particles 被引量:2
2
作者 Mengzhu Zhang Yunshan Ge +1 位作者 Chuanzhen Zhang Xin Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第4期157-169,共13页
Decomposition mass loss and pyrolysis products analyses of particles sampled at various locations along the tailpipe of a Euro-IV diesel engine were performed using a thermo gravimetry in conjunction with Fourier tran... Decomposition mass loss and pyrolysis products analyses of particles sampled at various locations along the tailpipe of a Euro-IV diesel engine were performed using a thermo gravimetry in conjunction with Fourier transformation infrared spectrometrymass spectrum.Diesel particles were collected at the same location with and without diesel oxidation catalyst(DOC)mounted on the test engine separately.The three poles in thermal gravity-differential thermal gravity images suggested that the decomposition process of diesel particles could be divided into three stages which correspond to the decompositions of lower boiling substances,higher boiling substances and soot respectively.It is noticed that no matter whether DOC was mounted or not,the further the particles were sampled away from the engine block,the lower the peak temperatures and the heavier the mass losses within the first two stages,which indicated that the soluble organic fraction in the particle samples increased and therefore lowering the activation energy of thermal decomposition.Hydroxyl,ammonia,C_xH_y fragments,benzene,toluene,and phenol were found to be the primary products of particle decomposition,which didn’t change with the location of particle sample point.The employment of DOC increased the activation energy for particle oxidation and resulted in a higher peak temperature and lower mass loss within the first-stage.Moreover,the C=O stretching bands of aldehyde and ketone at 1771 cm-1 was only detected without a DOC,while the N02 peak at 1634 cm-1 was solely noticed with the presence of DOC.Compared to the first-stage pyrolysis products,more polycyclic aromatic hydrocarbons and less C_xH_y fragments were seen in the second-stage. 展开更多
关键词 Transport distance Diesel oxidation catalyst Thermal decomposition Pyrolysis products PARTICLE
原文传递
Coupling metal oxide nanoparticle catalysts for water oxidation to molecular light absorbers
3
作者 Heinz Frei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第2期241-249,共9页
Water oxidation, as a mandatory reaction of solar fuels conversion systems, requires the use of light absorbers with electronic properties that are well matched with those of the multi-electron catalyst in order to ac... Water oxidation, as a mandatory reaction of solar fuels conversion systems, requires the use of light absorbers with electronic properties that are well matched with those of the multi-electron catalyst in order to achieve high efficiency. Molecular light absorbers offer flexibility in fine tuning of orbital energetics,and metal oxide nanoparticles have emerged as robust oxygen evolving catalysts. Hence, these material choices offer a promising approach for the development of photocatalytic systems for water oxidation.However, efficient charge transfer coupling of molecular light absorbers and metal oxide nanoparticle catalysts has proven a challenge. Recent new approaches toward the efficient coupling of these components based on synthetic design improvements combined with direct spectroscopic observation and kinetic evaluation of charge transfer processes are discussed. 展开更多
关键词 Water oxidation catalysts Metal oxides Molecular light absorbers Artificial photosynthesis Charge transfer Electronic coupling
下载PDF
Effects of a diesel oxidation catalyst on gaseous pollutants and fine particles from an engine operating on diesel and biodiesel
4
作者 Xiaoyan SHI Kebin HE +2 位作者 Weiwei SONG Xingtong WANG Jihua TAN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2012年第4期463-469,共7页
The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very eff... The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very effective in hydrocarbon (HC) and CO oxidation. Approximately 90%-95% reduction in CO and 36%-70% reduction in HC were realized using the DOC. Special attention was focused on the effects of the DOC on elemental carbon (EC) and organic carbon (OC) fractions in fine particles (PM2.5) emitted from the diesel engine. The carbonaceous compositions of PM2.5 were analyzed by the method of thermal/optical reflectance (TOR). The results showed that total carbon (TC), OC and EC emissions for PM2.5 from diesel fuel were generally reduced by the DOC. For diesel fuel, TC emissions decreased 22%-32% after the DOC depending on operating modes. The decrease in TC was attributed to 35%-97% decrease in OC and 3%-65% decrease in EC emissions. At low load, a significant increase in the OC/EC ratio of PMz.5 was observed after the DOC. The effect of the DOC on the carbonaceous compositions in PM2.5 from B20 showed different trends compared to diesel fuel. At low load, a slight increase in EC emissions and a significant decrease in OC/EC ratio of PM2.5 after DOC were observed for B20. 展开更多
关键词 diesel oxidation catalyst (DOC) diesel particulate matters elemental carbon (EC) organic carbon (OC) BIODIESEL
原文传递
Effect of Different Dopant in the Mo-V-Te-O Catalyst on the Performance of Selective Oxidation Propane to Acrolein 被引量:1
5
作者 HuaChangJIANG WeiMinLU HuiLinWAN 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第8期977-980,共4页
关键词 ACROLEIN mixed metal oxides catalysts selective oxidation PROPANE XRD.
下载PDF
Base-free aerobic oxidation of glycerol on TiO_2-supported bimetallic Au–Pt catalysts 被引量:5
6
作者 Yihong Shen Yuming Li Haichao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期669-673,共5页
The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au-... The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au- Pd and Pt-Pd catalysts on TiO2 were examined under base-free conditions. Pt exhibited a superior activity relative to Pd, and Au-Pd and Pt-Pd while Au was essentially inactive. The presence of Au on the Au-Pt/TiO2 catalysts led to their higher activities (normalized per Pt atom) in a wide range of Au/Pt atomic ratios (i.e. 1/3-7/1 ), and the one with the Au/Pt ratio of 3/1 exhibited the highest activity. Such promoting effect is ascribed to the increased electron density on Pt via the electron transfer from Au to Pt, as characterized by the temperature-programmed desorption of CO and infra-red spectroscopy for CO adsorption. Meanwhile, the presence of Au on Au-Pt/TiO2, most like due to the observed electron transfer, changed the product selectivity, and facilitated the oxidation of the secondary hydroxyl groups in glycerol, leading to the favorable formation of dihydroxyacetone over glyceraldehyde and glyceric acid that were derived from the oxidation of the primary hydroxyl groups. The synergetic effect between Au and Pt demonstrates the feasibility in the efficient oxidation of glycerol to the targeted products, for example, by rational tuning of the electronic properties of metal catalysts. 展开更多
关键词 Glycerol aerobic oxidation Glyceraldehyde Dihydroxyacetone Bimetallic Au-Pt catalyst Synergetic effect
下载PDF
Clean Aerobic Liquid Oxidation of Aldehydes with Solid Catalyst 被引量:2
7
作者 HongBingJI DuGuiHE +1 位作者 JunSONG YuQIAN 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第10期1241-1244,共4页
关键词 Clean oxidation aldehydes solid catalyst.
下载PDF
Synthesis and study of λ-MnO_2 supported Pt nanocatalyst for methanol electro-oxidation 被引量:3
8
作者 XIE Jia, LI Xiang, YU Zhihui, ZHANG Lijuan, LI Fan, and XIA Dingguo College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China 《Rare Metals》 SCIE EI CAS CSCD 2010年第2期187-192,共6页
A λ-MnO2 supported Pt nanocatalyst(5 wt.% Pt/λ-MnO2) was synthesized using a facile approach.X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electronic microscope(SEM), transmission e... A λ-MnO2 supported Pt nanocatalyst(5 wt.% Pt/λ-MnO2) was synthesized using a facile approach.X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electronic microscope(SEM), transmission electron microscopy(TEM), and energy disperse spectroscopy(EDS) were used for catalyst structure and morphology characterization, which showed that the metallic Pt particles were attached on a λ-MnO2 surface through the interaction between Pt and λ-MnO2.Cyclic voltammetry(CV) was used to test the catalytic activity of Pt/λ-MnO2 toward methanol oxidation, which showed that Pt/λ-MnO2 catalyst has much higher catalytic activity than baseline Pt/C catalyst. 展开更多
关键词 electrochemistry composite catalyst MnO2 Pt methanol oxidation
下载PDF
Designing Oxide Catalysts for Oxygen Electrocatalysis: Insights from Mechanism to Application 被引量:1
9
作者 Ning Han Wei Zhang +7 位作者 Wei Guo Hui Pan Bo Jiang Lingbao Xing Hao Tian Guoxiu Wang Xuan Zhang Jan Fransaer 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期514-546,共33页
The electrochemical oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal–air batteries. ORR and OER both hav... The electrochemical oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal–air batteries. ORR and OER both have significant activation barriers, which severely limit the overall performance of energy conversion devices that utilize ORR/OER. Meanwhile, ORR is another very important electrochemical reaction involving oxygen that has been widely investigated. ORR occurs in aqueous solutions via two pathways: the direct 4-electron reduction or 2-electron reduction pathways from O_(2) to water(H_2O) or from O_(2) to hydrogen peroxide(H_2O_(2)). Noble metal electrocatalysts are often used to catalyze OER and ORR, despite the fact that noble metal electrocatalysts have certain intrinsic limitations, such as low storage. Thus, it is urgent to develop more active and stable low-cost electrocatalysts, especially for severe environments(e.g., acidic media). Theoretically, an ideal oxygen electrocatalyst should provide adequate binding to oxygen species. Transition metals not belonging to the platinum group metal-based oxides are a low-cost substance that could give a d orbital for oxygen species binding. As a result, transition metal oxides are regarded as a substitute for typical precious metal oxygen electrocatalysts. However, the development of oxide catalysts for oxygen reduction and oxygen evolution reactions still faces significant challenges, e.g., catalytic activity, stability, cost, and reaction mechanism. We discuss the fundamental principles underlying the design of oxide catalysts, including the influence of crystal structure, and electronic structure on their performance. We also discuss the challenges associated with developing oxide catalysts and the potential strategies to overcome these challenges. 展开更多
关键词 Oxygen evolution Oxygen reduction Oxide catalysts catalyst design Fuel cell Metal–air batteries
下载PDF
Effect of diluent and reaction parameter on selective oxidation of propane over MoVTeNb catalyst using nanoflow catalytic reactor
10
作者 Restu Kartiko Widi Sharifah Bee Abdul Hamid Robert Schlgl 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第2期130-134,共5页
The selective oxidation of propane to acrylic acid over an MoVTeNb mixed oxide catalyst, dried and calcined before reaction has been studied using high-throughput instrumentation, which is called nanoflow catalytic re... The selective oxidation of propane to acrylic acid over an MoVTeNb mixed oxide catalyst, dried and calcined before reaction has been studied using high-throughput instrumentation, which is called nanoflow catalytic reactor. The effects of catalyst dilution on the catalytic performance of the MoVTeNb mixed oxide catalyst in selective oxidation of propane to acrylic acid were also investigated. The effects of some reaction parameters, such as gas hourly space velocity (GHSV) and reaction temperature, for selective oxidation of propane to acrylic acid over diluted MoVTeNb catalyst have also been studied. The configuration of the nanoflow is shown to be suitable for screen catalytic performance, and its operating conditions were mimicked closely to conventional laboratory as well as to industrial conditions. The results obtained provided very good reproducibility and it showed that preparation methods as well as reaction parameters can play significant roles in catalytic performance of these catalysts. 展开更多
关键词 selective oxidation PROPANE acrylic acid MoVTeNb mixed oxide catalyst
下载PDF
Pt/FeSnO(OH)_5: A Novel Supported Pt Catalyst for Catalytic Oxidation of Benzene
11
作者 俞瀚 曹周明 +1 位作者 魏笑峰 于岩 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第6期889-902,共14页
Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of... Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of the catalysts by XRD, SEM, TEM, EDS, XPS, BET, TGA and DTA, we found most Pt could be reduced to metallic state when the hydroxyl catalyst was used as supporter, and the metallic Pt in Pt/Fe Sn O(OH)5 was more active than the oxidized Pt in Pt/γ-Al_2O_3 in catalytic oxidation of VOCs. Pt/FeSnO(OH)_5 shows both good catalytic activity and high stability, which may be a promising catalyst. This study may also be helpful for the design and fabrication of new catalysts. 展开更多
关键词 FeSnO(OH)5 supported Pt catalyst catalytic oxidation of benzene
下载PDF
Doping Effect of CuO on CeO_2 for CO Oxidation 被引量:1
12
作者 Ji Jun ZHANG Neng LI +1 位作者 Ying Jun LIU Bing Xiong LIN(Institute of Physical Chemistry, Peking University, Beijing 100871) 《Chinese Chemical Letters》 SCIE CAS CSCD 1998年第9期873-876,共4页
Cu-Ce-O catalysts, prepared by the amorphous citrate precursor (ACP) method, wereinvestigated by ICP, XRD and ndcro-reactor techniques. At low copper content of Cu-Ce-Ocatalysts, fluorite structures formed at low calc... Cu-Ce-O catalysts, prepared by the amorphous citrate precursor (ACP) method, wereinvestigated by ICP, XRD and ndcro-reactor techniques. At low copper content of Cu-Ce-Ocatalysts, fluorite structures formed at low calcining temperatures, and Cuo doped into the CeO2matrix; at high copper content, in addition to the fluorite structure, crystalline monoclinic phaseCuO formed as well at high calcining temperatures. There was no other phase formed even calcinedat 1000℃. The results show that only a little CuO dopes into the CeO2 matrix to form complexoxide, which promotes the catalytic activity of CO oxidation greatly. The optimum Cu-Ce-Ocatalyst is composed of 15% copper by Cu/(Ce+Cu) atomic ratio, and calcined at 700℃ for 4h. Thephase compositions include the crystalline CuO and the active complex oxide with fluoritestructure. The formulation of the active complex oxide is Cu0.06Ce0. 94O1.94. 展开更多
关键词 CERIA copper oxide fluorite-type structure CO oxidation catalyst doping effect
下载PDF
Catalytic behavior of Mo-Bi-Fe-Co-K-M-O(M=Ce,Gd,CeGd)catalysts for selective oxidation of isobutene
13
作者 Qinghui Li Huahua Zhao +4 位作者 Jian Yang Jun Zhao Liang Yan Huanling Song Lingjun Chou 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第1期84-93,I0003,共11页
The further improvement of methacrolein(MAL)selectivity from isobutene(IB)oxidation is crucial and challenging.In this study,based on the typical Mo-Bi-Fe-Co-K-O mixed metal oxide,the rare earth element Gd-doped,Ce-do... The further improvement of methacrolein(MAL)selectivity from isobutene(IB)oxidation is crucial and challenging.In this study,based on the typical Mo-Bi-Fe-Co-K-O mixed metal oxide,the rare earth element Gd-doped,Ce-doped and CeGd co-doped catalysts were prepared by co-precipitation strategy to increase the selectivity of MAL from 47.9%to 49.8%,64.2% and 68.6%,respectively.In order to elucidate in-depth the promoting effect of Ce and/or Gd,various characterizations were utilized including X-ray diffraction patterns(XRD),Raman,X-ray fluorescence spectrometry(XRF),X-ray photoelectron spectroscopy(XPS),O_(2)-temperature programmed desorption(O_(2)-TPD),H2-temperature programmed reduction(H2-TPR),CO_(2)-temperature programmed desorption(CO_(2)-TPD),IB-temperature programmed desorption(i-C4-TPD)and in-situ IB-Fourier transform infrared spectroscopy(IB-FTIR).Both Ce and Gd finely regulate the bulk and surface structure of the catalyst,thus altering the redox ability,oxygen mobility and storage ability and basicity.Compared with Ce,Gd addition slightly regulates the variation of Co^(2+)/Co^(3+)redox couples,greatly enhances the interaction among the components on the catalyst,thus only increases the content of surface oxygen species and has little effect on their mobility.While Cecontaining catalyst performs stronger oxygen storage and migration ability,thus leading to the overproduction of surface Odefectspecies,which are proposed to be the active sites for the production of MAL and COx.The CeGd co-doped catalyst possesses the proper content of surface Odefectspecies,thus exhibits much higher MAL selectivity.Moreover,the promoting mechanism of Ce and/or Gd over IB oxidation is proposed.Therefore,this work is helpful for understanding the influence of rare earth elements on the structure of mixed metal oxides and the olefin selective oxidation reaction. 展开更多
关键词 Mixed metal oxide catalyst Rare earth element ISOBUTENE Selective oxidation METHACROLEIN
原文传递
TiO_2-Supported Binary Metal Oxide Catalysts for Low-temperature Selective Catalytic Reduction of NO_x with NH_3 被引量:5
14
作者 WU Bi-jun LIU Xiao-qin +1 位作者 XIAO Ping WANG Shu-gang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第5期615-619,共5页
Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele... Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3. 展开更多
关键词 Selective catalytic reduction of NO with NH3 Low-temperature selective catalytic reduction Binary metal oxide catalyst FTIR NH3-TPD
下载PDF
A review on the structure-performance relationship of the catalysts during propane dehydrogenation reaction 被引量:3
15
作者 Bohan Feng Yue-Chang Wei +1 位作者 Wei-Yu Song Chun-Ming Xu 《Petroleum Science》 SCIE CAS CSCD 2022年第2期819-838,共20页
Dehydrogenation of propane(PDH)technology is one of the most promising on-purpose technologies to solve supply-demand unbalance of propylene.The industrial catalysts for PDH,such as Pt-and Cr-based catalysts,still hav... Dehydrogenation of propane(PDH)technology is one of the most promising on-purpose technologies to solve supply-demand unbalance of propylene.The industrial catalysts for PDH,such as Pt-and Cr-based catalysts,still have their own limitation in expensive price and security issues.Thus,a deep understanding into the structure-performance relationship of the catalysts during PDH reaction is necessary to achieve innovation in advanced high-efficient catalysts.In this review,we focused on discussion of structure-performance relationship of catalysts in PDH.Based on analysis of reaction mechanism and nature of active sites,we detailed interaction mechanism between structure of active sites and catalytic performance in metal catalysts and oxide catalysts.The relationship between coke deposition,co-feeding gas,catalytic activity and nanostructure of the catalysts are also highlighted.With these discussions on the relationship between structure and performances,we try to provide the insights into microstructure of active sites in PDH and the rational guidance for future design and development of PDH catalysts. 展开更多
关键词 Dehydrogenation of propane Metal catalysts Oxide catalysts Structure-performance relationship Active site Reaction mechanism
下载PDF
Effects of carrier and Mn loading on supported manganese oxide catalysts for catalytic combustion of methane 被引量:3
16
作者 Jinyan Hu Wei Chu Limin Shi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第2期159-164,共6页
Supported manganese oxide catalysts were prepared by incipient wetness impregnation method for methane catalytic combustion, and effects of the support (Al2O3, SiO2 and TiO2) and Mn loading were investigated. These ... Supported manganese oxide catalysts were prepared by incipient wetness impregnation method for methane catalytic combustion, and effects of the support (Al2O3, SiO2 and TiO2) and Mn loading were investigated. These catalysts were characterized with N2 adsorption, X-ray diffraction, X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Methane conversion varied in a large range depending on supports or Mn loading. Al2O3 supported 15% Mn catalyst exhibited better activity toward methane catalytic oxidation. The manganese state and oxygen species played an important role in the catalytic performance, 展开更多
关键词 methane catalytic combustion manganese oxide catalyst support effect ALUMINA
下载PDF
Effect of Sr loading on oxydehydrogenation of propane to propylene over Al_2O_3-supported V-Mo catalysts 被引量:2
17
作者 Meilana Dharma Putra Saeed M.Al-Zahrani Ahmed E.Abasaeed 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第5期778-782,共5页
Incorporation of strontium into V-Mo alumina-supported catalyst enhanced its performance (increased conversion and selectivity,decreased reducibility and improved stability) in propane oxydehydrogenation to propylene.... Incorporation of strontium into V-Mo alumina-supported catalyst enhanced its performance (increased conversion and selectivity,decreased reducibility and improved stability) in propane oxydehydrogenation to propylene.12.5% Sr loading was shown to be the optimum content to the V-Mo catalyst.The results were supported by various characterization techniques,namely,BET,XRD,SEM,FTIR and TPD. 展开更多
关键词 OXYDEHYDROGENATION STRONTIUM vanadium-molybdenum oxides catalysts PROPANE PROPYLENE LOADING
下载PDF
Effect of Reaction Temperature and Pressure on the Metathesis Reaction between Ethene and 2-Butene to Propene on the WO_3/Al_2O_3-HY Catalyst 被引量:2
18
作者 Shengjun Huang Shenglin Liu +3 位作者 Wenjie Xin Sujuan Xie Qingxia Wang Longya Xu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第2期93-99,共7页
Effect of reaction temperature and pressure on the metathesis reaction between ethene and 2-butene to propene was studied on the WO3/γ-Al2O3-HY catalyst. The activity is found to increase with elevated temperature an... Effect of reaction temperature and pressure on the metathesis reaction between ethene and 2-butene to propene was studied on the WO3/γ-Al2O3-HY catalyst. The activity is found to increase with elevated temperature and reaches a plateau at 150-240 ℃. After that, the activity undergoes a remarkable decrement at too high temperature. The effect of temperature is elucidated by the oxidation state of tungsten species. The evaluation results also indicate that the stability is dependent on this reaction parameter. Medium pressure (0.5-0.8 MPa) is favorable for stability, while atmospheric pressure or too high pressure (〉1.0 MPa) deteriorates the stability. For explanation, UV Vis, FT-IR, O2-TPO, and TG techniques are used to characterize the spent catalysts. 展开更多
关键词 METATHESIS tungsten oxide catalyst temperature PRESSURE ETHENE 2-BUTENE PROPENE
下载PDF
Preparation of Sulphur-containing Aromatic Amines by Reduction of the Corresponding Aromatic Nitro Compounds with Hydrazine Hydrate over Iron Oxide Hydroxide Catalyst 被引量:1
19
作者 Qi Xun SHI Rong Wen LU Zhu Xia ZHANG De Feng ZHAO 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第8期1045-1047,共3页
关键词 Iron oxide hydroxide catalyst hydrazine hydrate sulphur-containing aromatic nitro compounds reduction.
下载PDF
Ethanol electrooxidation on Pd/C nanoparticles in alkaline media 被引量:2
20
作者 Fangfang Zhang Debi Zhou Mingda Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期71-76,共6页
Carbon-supported Pd nanoparticles were prepared by microwave heating-glycol reduction method, and characterized by a wide array of experimental techniques including X-ray diffraction spectroscopy(XRD) and transmissi... Carbon-supported Pd nanoparticles were prepared by microwave heating-glycol reduction method, and characterized by a wide array of experimental techniques including X-ray diffraction spectroscopy(XRD) and transmission electron microscopy(TEM). The electrooxidation behaviors of ethanol on the Pd/C electrode in alkaline media were investigated using cyclic voltammetry(CV), chronoamperometry(CA), electrochemical impedance spectroscopy(EIS) and single cell performance methods. Pd/C electrode for ethanol oxidation showed high electro-catalytic activity and long term stability. However, it is observed that the current density decreases with the increasing of the potential and negative impedance presents in the potential from-0.1 to0.1 V. The decreasing current density and the negative impedance could be due to the adsorbed intermediates species that inhibited the further oxidation of ethanol. Based on the chemical reaction analysis and EIS spectra, equivalent circuits relating to various potential zones have been obtained. These results reveal the dynamic adsorption of intermediates species on Pd surfaces. Significantly, it is clarified that the adsorption behavior begins from the maximum catalysis of electro-catalysis and ends in the formation of the palladium(II) oxide layer on the electrode surface. 展开更多
关键词 catalyst Adsorption behavior Ethanol oxidation Negative impedance
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部