Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions...Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h.展开更多
The formation processes of a composite ceramic coating on AM50 magnesium alloy prepared by plasma electrolytic oxidation (PEO) in a K 2 ZrF 6 electrolyte solution were studied by scanning electron microscope (SEM)...The formation processes of a composite ceramic coating on AM50 magnesium alloy prepared by plasma electrolytic oxidation (PEO) in a K 2 ZrF 6 electrolyte solution were studied by scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX). Electrochemical impedance spectroscopy (EIS) tests were used to study the variation of the corrosion resistance of the coating during the PEO treatment. The results show that the coating formed on Mg alloy is mainly composed of MgO and MgF 2 when the applied voltage is lower than the sparking voltage, and zirconium oxides start to be deposited on Mg substrate after the potential exceeding the sparking voltage. The corrosion resistance of the coating increases with increasing the applied voltage.展开更多
Ceramic coating was deposited on TiAl alloy substrate by micro-arc oxidation(MAO)in a silicate-aluminate electrolyte solution with additives including sodium citrate,graphite and sodium tungstate.The microstructures a...Ceramic coating was deposited on TiAl alloy substrate by micro-arc oxidation(MAO)in a silicate-aluminate electrolyte solution with additives including sodium citrate,graphite and sodium tungstate.The microstructures and compositions were analyzed by SEM,EDX and XRD.The corrosion and wear properties of the coatings were investigated by potentiodynamic polarization and ball-on-disc wear test,respectively.The results show that the MAO coatings consist of WO3,Ti2O3,graphite and Al2O3 besides Al2TiO5 and Al2SiO5.With additives in the electrolyte,the working voltage at the micro-arc discharge stage decreases,and the ceramic coating gets smoother and more compact.The corrosion current density of MAO coating is much lower than that of TiAl substrate.It can be reduced from 9.81×10-8A/cm 2to 3.02×10-10A/cm 2 .The MAO coatings composed of hard Al2O3,WO3 and Ti2O3 obviously improve the wear resistance of TiAl alloy.The wear rate is-3.27×10-7g/(N·m).展开更多
In the preparation of plasma electrolytic oxidation(PEO)coating,the rapid heating of freely-happened electron avalanche under traditional discharge(TD)mode inevitably results in a strong eruption of electric breakdown...In the preparation of plasma electrolytic oxidation(PEO)coating,the rapid heating of freely-happened electron avalanche under traditional discharge(TD)mode inevitably results in a strong eruption of electric breakdown melt.The PEO coating is loose and invariably composed of a very thin inner dense layer and an outer loose layer,as a result of which its properties and application have been limited greatly.In this work,for purpose of weakening the eruption of breakdown melt,thickening the inner dense layer,densifying the outer loose layer and improving the performance of PEO coating,ordinal discharge(OD)mode of PEO coating is developed by regulating the mass ratio of MgF_(2) to MgO(α)and voltage in the PEO investigation on AZ61 magnesium alloy in KF-KOH electrolyte.The formation mechanism under different discharge mode,electrochemical corrosion and wear of PEO coatings are investigated.The results show that the suitableαand voltage for effective OD are 1.3 and 130 V under which the freely-happened electron avalanche in MgF_(2) under TD mode can be restricted by the adequate adjacent MgO.Compared with TD mode,the inner dense layer,in which the(10¯1)plane of MgF_(2) is parallel to the(111)plane of MgO at their well-knit semi-coherent interface,is thickened to 2.4∼7.2 times,the corrosion potential(E_(corr))improvement is enlarged to 3.6∼13.2 times and the corrosion current intensity(I_(corr))is reduced from 10.8∼9.499 to 0.433(10^(−6) A/cm^(2)).The outer loose layer is densified and the wear rate is lessened 65.5%∼89.8%by the evident melioration in surface porosity,impedance and hardness.This work deepens the understanding about the discharge of PEO coating and provides an available OD mode for preparing excellent PEO coating.展开更多
Plasma electrolytic oxidation(PEO),a promising surface treatment method to improve the corrosion and wear resistance of magnesium and its alloys,operates at high voltages,resulting in a relatively high energy cost.To ...Plasma electrolytic oxidation(PEO),a promising surface treatment method to improve the corrosion and wear resistance of magnesium and its alloys,operates at high voltages,resulting in a relatively high energy cost.To make the PEO process more economically viable,its energy efficiency needs to be improved.This study investigates the growth behaviour and microstructural characteristics of low-energy PEO coatings on an AM50 magnesium alloy in a concentrated electrolyte containing sodium tetraborate.The surface morphology of the coatings was different from typical PEO coating morphologies and a large voltage oscillation was observed during treatment.Using different characterisation techniques,and based on a micro-discharge model,a correlation was made between the voltage-time behaviour,microdischarge characteristics and the composition and microstructure of the coated samples.The results suggest electrolyte chemistry can somewhat control discharge behaviour,which plays an important role in PEO coating growth.展开更多
Microarc oxidation is an effective surface treatment for improving certain properties of metals and their alloys.In this paper,TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were prepared on Ti-6Al-4V by microarc...Microarc oxidation is an effective surface treatment for improving certain properties of metals and their alloys.In this paper,TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were prepared on Ti-6Al-4V by microarc oxidation.Thecoatings exhibited good corrosion resistance and antimicrobial properties.X-ray diffraction(XRD),scanning electronmicroscopy(SEM),and 3D laser confocal were used to characterize the coatings.The properties of TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were analyzed,including microstructure,surface roughness,corrosion resistance,andantimicrobial properties.The electrochemical results showed that the coatings prepared by microarc oxidation hadenhanced corrosion resistance compared to the substrate.The antibacterial properties of TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coating against Pseudomonas aeruginosa were evaluated by fluorescence microscopy and plate counting.The antibacterial rate of TiO_(2)/Cu_(2)O@CeO_(2)coating was up to 99.70%.In summary,the TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings prepared by microarc oxidation have a potential application background in the field of marine corrosionprotection and biofouling.展开更多
This research systematically examined the degradation,antibacterial effects,and biocompatibility of micro-arc oxidation(MAO)coatings with nano CuO and ZnO on extruded Mg alloys.Both copper(Cu)and Zinc(Zn)possess antib...This research systematically examined the degradation,antibacterial effects,and biocompatibility of micro-arc oxidation(MAO)coatings with nano CuO and ZnO on extruded Mg alloys.Both copper(Cu)and Zinc(Zn)possess antibacterial properties.The findings demonstrated that adding ZnO will appreciably reduce the degradation rate of MAO-coating alloy due to the self-sealing micro holes.CuO+MAO coating exhibited excellent antibacterial performance,with an antibacterial rate of over 90%within 6 h co-cultured with Staphylococcus aureus.Similarly,the antibacterial rate of ZnO+MAO coating reached 90%after 12 h co-culture.Cytotoxicity test using MG63 cell indicated that the incorporation of CuO and ZnO did not notably affect the cell viability rate of the coating.Moreover,after 14 days of culture,the CuO+MAO and ZnO+MAO coated samples exhibited higher alkaline phosphatase(ALP)activity than the MAO-coated and uncoated samples,suggesting favorable osteogenic properties.展开更多
Recent research on microstructural characteristics and oxidation behavior of Ti(1-x)AlxN thin film were surveyed. The Ti(1-x)AlxN coatings have three different phase regions, Bl structure for lower x value, wurtzite s...Recent research on microstructural characteristics and oxidation behavior of Ti(1-x)AlxN thin film were surveyed. The Ti(1-x)AlxN coatings have three different phase regions, Bl structure for lower x value, wurtzite structure for higher x value and unidentified structure for medium x value. Based upon the selective oxidation mechanism the oxidation results of Ti(1-x)AlxN thin film with different Ti/Al ratio were predicated.展开更多
Magnesium and its alloys have been used in many industries, but they are reactive and require protection against aggressive environments. In this study, oxide coatings were applied on AZ91D magnesium alloy using micro...Magnesium and its alloys have been used in many industries, but they are reactive and require protection against aggressive environments. In this study, oxide coatings were applied on AZ91D magnesium alloy using micro-arc oxidation (MAO) process. Then, in order to seal the pores of the MAO coatings, the samples were immersed in cerium bath for different times. The surface morphologies and compositions of the coatings were analyzed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS), respectively. The corrosion behavior of the coatings was investigated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. The amount of the porosity of the coating was measured by electrochemical method. It was found that the sealing treatments by immersion in cerium bath successfully sealed the pores of the MAO coatings. The results of the corrosion tests showed that the MAO coating which was sealed in Ce bath for 10 min enhanced the corrosion resistance of the substrate significantly. Furthermore, this coating had the lowest amount of the porosity among the coatings.展开更多
A micro-arc oxidation(MAO)/zinc stearate(ZnSA) composite coating was fabricated via MAO processing and subsequent sealing with electrodeposition of a superhydrophobic ZnSA. The surface morphologies,chemical compos...A micro-arc oxidation(MAO)/zinc stearate(ZnSA) composite coating was fabricated via MAO processing and subsequent sealing with electrodeposition of a superhydrophobic ZnSA. The surface morphologies,chemical composition and corrosion resistance of the coatings were investigated using field-emission scanning electron microscopy, Fourier transform infrared, X-ray diffraction and electrochemical and hydrogen evolution measurements. Results indicated that the MAO coating was efficiently sealed by the following superhydrophobic ZnSA coating. The MAO/ZnSA composite coating significantly enhanced the corrosion resistance of Mg alloy Mg-4 Li-1 Ca due to its superhydrophobic function. Additionally, corrosion mechanism was suggested and discussed for the composite coating.展开更多
Spraying test were conducted twice before steel slabs were put into the furnace and the effects of the oxidation resistance coating were investigated and verified. By comparing the change of slab weight, rolling force...Spraying test were conducted twice before steel slabs were put into the furnace and the effects of the oxidation resistance coating were investigated and verified. By comparing the change of slab weight, rolling force of the roughing mill & finishing mill, thickness of oxide film on the surface slabs by an XL-30 SEM and acid pickling speed of slabs with and without coating,it was found that the oxidization waste in the furnace decreased by 40 percent with the use of the coating and the corresponding yield capacity could increase by 0.2 percent at least. Besides, the thickness of oxide scale film on hot roiled products was reduced by 1.44 micrometers and the acid pickling time was shortened by 6s with the coating technology, while the total rolling force of RM & FM did not changed. Furthermore, the application prospect of this technology was also discussed in this paper.展开更多
Considering the compatibility between degradation and bioactivity of magnesium-based implants for bone repair, micro-arc oxidation is used to modify the magnesium alloy surface in aqueous electrolytes, allowing stront...Considering the compatibility between degradation and bioactivity of magnesium-based implants for bone repair, micro-arc oxidation is used to modify the magnesium alloy surface in aqueous electrolytes, allowing strontium, calcium, and phosphorus to be incorporated into the coating. The thickness, composition, morphology and phase of this Sr-Ca-P containing coating are characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer and X-ray diffraction. The in vitro and in vivo degradation of the coating is evaluated by immersion test, electrochemical test and implantation test. Moreover, the cytocompatibility is tested with osteoblast cell according to ISO 10993. The results show that St, Ca and P elements are incorporated into the oxide coating, and a refined structure with tiny discharging micro-pores is observed on the surface of the coating. The Sr-Ca-P coating possesses a better corrosion resistance in vitro and retards the degradation in vivo. Such coating is expected to have significant medical applications on orthopedic implants and bone repair materials.展开更多
The effect of sputtered Ti-50Al-10Cr and Ti-50A1-20Cr coatings on both isothermal and cyclic oxidation resistance at 800-900℃ and hot corrosion resistance at 850℃ of Ti-24Al-14Nb-3V was investigated. Results indicat...The effect of sputtered Ti-50Al-10Cr and Ti-50A1-20Cr coatings on both isothermal and cyclic oxidation resistance at 800-900℃ and hot corrosion resistance at 850℃ of Ti-24Al-14Nb-3V was investigated. Results indicated that Ti-24Al-14Nb-3V alloys exhibited poor oxidation resistance due to the formation of Al2O3+TiO2+AlNbO4 mixed scales in air at 800-900℃ and poor hot corrosion resistance due to the spoliation of scales formed in Na2SO4+K2SO4 melts at 850℃. Both Ti-50Al-10Cr and Ti-50Al-20Cr coatings remarkably improved the oxidation and hot corrosion resistance of Ti-24Al-14Nb-3V alloy.展开更多
A coating of composition Si-40Mo (wt pct) was prepared by fused slurry coating method on the two-dimensional carbon/carbon (2D-C/C) composite to improve oxidation resistance. In the procedure of the fabrication, pure ...A coating of composition Si-40Mo (wt pct) was prepared by fused slurry coating method on the two-dimensional carbon/carbon (2D-C/C) composite to improve oxidation resistance. In the procedure of the fabrication, pure St slurry inner layer in the pre-coating was necessary to apply because of infiltration of liquid Si into the substrate during the sintering. The coating consists of Si continuous phase and MoSi2 particles. In addition, the infiltration of Si into the substrate and the SiC reaction layer between the coating and the C/C composite were observed. Oxidation behavior of coated and uncoated C/C composites was studied in cyclic mode. The oxidation resistance and the thermal shock resistance of the Si-Mo fused slurry coating were quite excellent at 1370℃.展开更多
YSZ/(Ni, Al) composite coatings with different Ni:Al mole ratios were deposited on superalloy Inconel 600 by electrophoretic deposition(EPD) technique, followed by sintering in CH_4 atmosphere at 1 100 ℃for 2 h ...YSZ/(Ni, Al) composite coatings with different Ni:Al mole ratios were deposited on superalloy Inconel 600 by electrophoretic deposition(EPD) technique, followed by sintering in CH_4 atmosphere at 1 100 ℃for 2 h and isothermally oxidation at 1000 ℃ for 50 h. After sintering at 1100 ℃ for 2 h in CH_4 atmosphere, besides ZrC and t-ZrO_2 phases, the phase constitutes of Ni:Al mole ratios with 1:3, 1:2, and 1:1 were(Zr, Al)C, AlNi_3 and Ni phases, respectively. A remarkable difference in the oxidation behaviors of YSZ/(Ni, Al) composite coatings with different Ni:Al mole ratios was observed. For YSZ(Ni:Al=1:3) coated sample, oxidation at 1000 ℃ causes decomposition of the(Zr,Al)C solid solution to metallic Al, and then most of the Al is oxidized to Al_2O_3. For the YSZ(Ni:Al=1:2) coated sample, oxidation at 1000 ℃ mainly causes decomposition of the AlNi_3 phase. For YSZ(Ni:Al=1:1) coated sample, after oxidation at 1000 ℃, most of the Ni is oxidized to Ni O phase, and tolerated 50 h of oxidation and finally cracked and spalled from the specimen. YSZ(Ni:Al=1:3) and YSZ(Ni:Al=1:2) coated samples show superior oxidation resistance than that of YSZ coating. The different oxidation resistance mechanisms of YSZ/(Ni, Al) composite coatings sintered in CH_4 atmosphere were discussed.展开更多
Low and medium carbon steels were aluminized by the pack aluminizing technique using halideactivated pure-Al and Fe-Al packs. The effect of mixture composition, aluminizing temperatureand time and C content of the ste...Low and medium carbon steels were aluminized by the pack aluminizing technique using halideactivated pure-Al and Fe-Al packs. The effect of mixture composition, aluminizing temperatureand time and C content of the steel substrate on the structure and thickness of the aluminidelayer, and on the oxidation resistance was investigated. The optimum oxidation resistance canbe achieved with a low carbon steel substrate when the intermetallic phases Fe3Al and FeAlform the surface of the aluminide layer. In this case, the Al concentration at the surface of thealuminide coating is at least ≥15 wt pct. Formation of high Al concentration phases (FeAl3 andFe2Al5) during aluminizing should be avoided as they tend to embrittle the aluminide layer andreduce its oxidation resistance.展开更多
The forming process of silicide coatings on pure Mo and Mo-base alloys, obtained by the gas- phase deposition method. has been studied by examining the microstructure of coatings and the relationship between coating t...The forming process of silicide coatings on pure Mo and Mo-base alloys, obtained by the gas- phase deposition method. has been studied by examining the microstructure of coatings and the relationship between coating thickness and process parameters. It was shown that the growth of coatings was diffusion-controlled, the diffusion of silicon to be coated into Mo or Mo-base alloys was mainly responsible for the formation of silicide. The relationship between initial silicide thickness and oxidation resistance was also investigated, and the equation of service life of the coatings at high temperature in air is presented.展开更多
A kind of ceramic slurry was prepared and sprayed onto the surface of 9Ni steel at room temperature. The coating layer will not only reduce the depth of the formed Ni-enriched entanglement at high temperature but also...A kind of ceramic slurry was prepared and sprayed onto the surface of 9Ni steel at room temperature. The coating layer will not only reduce the depth of the formed Ni-enriched entanglement at high temperature but also have an excellent ability to resist oxidation of the 9Ni steel. Compared to bare specimen, the depths of the entanglement of the coated 9Ni specimen could be successfully reduced by 74.1% and the oxidation loss be decreased by 62.3% by heating at 1 250 ℃ for 60 min. In addition, the coated specimen indicates no trace of oxide pegs. It proves that the coating has outstanding improvement to internal oxidation resistance. Some characterization methods such as metalloscopy, XRD, XPS, SEM and EDX have been used to reveal a possible protective mechanism. The result shows that the coating layer reacts with the iron oxide to form Mg Fe2O4 on the surface of the coated specimen, which could provide a smaller diffusion coefficient rate of Fe ion. The coating with a low cost and easy implementation is promisingly applicable in the slab-reheating process of the 9Ni steel.展开更多
CO2 laser quick assembly technology is adopted on the surface of cast aluminum ZL104 to form a dense ceramic coating containing a great deal of nanometer Al2O3/TiO2 particles which eliminate cracks and porosities.The ...CO2 laser quick assembly technology is adopted on the surface of cast aluminum ZL104 to form a dense ceramic coating containing a great deal of nanometer Al2O3/TiO2 particles which eliminate cracks and porosities.The major phases of the coating are α-Al2O3 andβ-TiO2. The micro-hardness distribution of the coating is 1 813,1 504, 1 485 and 1 232 (HV0.05). The bonding strength of the coating LC1 is 11.4 N, which is 7.26 times higher than that of the conventional hot-spraying Al2O3/TiO2 coating. It has been proved by analysis that the bonding strength is achieved because of the effects of both super-quick laser consolidation and the nanometer effect of nanometer ceramic material.展开更多
The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electroche...The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electrochemical properties were studied by polarization curve and cyclic voltammetry. Trivalent chromium electroplating using Ti/IrO2+Ta2O5 anodes is carried out and the results were analyzed. Results show that this anode exhibits excellent electrochemical activity and stability in sulfate electrolysis. The electrocatalytic activity is determined not only by the content of IrO2 but also the structure and morphology of the anode coatings. The electroplating results indicats that Ti/IrO2+Ta2O5 anodes have excellent capabilities and merits in improving the stability of trivalent chromium electroplating in sulfate system.展开更多
基金Project (2007CB613700) supported by the National Basic Research Program of ChinaProject supported by Research Program of Excellent Scholars Studying Abroad of Ministry of Human Resources and Social Security,China
文摘Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h.
基金Project(2007CB613705)supported by the National Basic Research Program of ChinaProject(50901082)supported by the NationalNatural Science Foundation of China
文摘The formation processes of a composite ceramic coating on AM50 magnesium alloy prepared by plasma electrolytic oxidation (PEO) in a K 2 ZrF 6 electrolyte solution were studied by scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX). Electrochemical impedance spectroscopy (EIS) tests were used to study the variation of the corrosion resistance of the coating during the PEO treatment. The results show that the coating formed on Mg alloy is mainly composed of MgO and MgF 2 when the applied voltage is lower than the sparking voltage, and zirconium oxides start to be deposited on Mg substrate after the potential exceeding the sparking voltage. The corrosion resistance of the coating increases with increasing the applied voltage.
基金Project(2006KG03) supported by the Science and Technology Program of Shannxi Province, China
文摘Ceramic coating was deposited on TiAl alloy substrate by micro-arc oxidation(MAO)in a silicate-aluminate electrolyte solution with additives including sodium citrate,graphite and sodium tungstate.The microstructures and compositions were analyzed by SEM,EDX and XRD.The corrosion and wear properties of the coatings were investigated by potentiodynamic polarization and ball-on-disc wear test,respectively.The results show that the MAO coatings consist of WO3,Ti2O3,graphite and Al2O3 besides Al2TiO5 and Al2SiO5.With additives in the electrolyte,the working voltage at the micro-arc discharge stage decreases,and the ceramic coating gets smoother and more compact.The corrosion current density of MAO coating is much lower than that of TiAl substrate.It can be reduced from 9.81×10-8A/cm 2to 3.02×10-10A/cm 2 .The MAO coatings composed of hard Al2O3,WO3 and Ti2O3 obviously improve the wear resistance of TiAl alloy.The wear rate is-3.27×10-7g/(N·m).
基金supported by the National Natural Science Foundation of China(No.50974010)the Beijing Natural Science Foundation(No.2162036)the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.202010004006)。
文摘In the preparation of plasma electrolytic oxidation(PEO)coating,the rapid heating of freely-happened electron avalanche under traditional discharge(TD)mode inevitably results in a strong eruption of electric breakdown melt.The PEO coating is loose and invariably composed of a very thin inner dense layer and an outer loose layer,as a result of which its properties and application have been limited greatly.In this work,for purpose of weakening the eruption of breakdown melt,thickening the inner dense layer,densifying the outer loose layer and improving the performance of PEO coating,ordinal discharge(OD)mode of PEO coating is developed by regulating the mass ratio of MgF_(2) to MgO(α)and voltage in the PEO investigation on AZ61 magnesium alloy in KF-KOH electrolyte.The formation mechanism under different discharge mode,electrochemical corrosion and wear of PEO coatings are investigated.The results show that the suitableαand voltage for effective OD are 1.3 and 130 V under which the freely-happened electron avalanche in MgF_(2) under TD mode can be restricted by the adequate adjacent MgO.Compared with TD mode,the inner dense layer,in which the(10¯1)plane of MgF_(2) is parallel to the(111)plane of MgO at their well-knit semi-coherent interface,is thickened to 2.4∼7.2 times,the corrosion potential(E_(corr))improvement is enlarged to 3.6∼13.2 times and the corrosion current intensity(I_(corr))is reduced from 10.8∼9.499 to 0.433(10^(−6) A/cm^(2)).The outer loose layer is densified and the wear rate is lessened 65.5%∼89.8%by the evident melioration in surface porosity,impedance and hardness.This work deepens the understanding about the discharge of PEO coating and provides an available OD mode for preparing excellent PEO coating.
基金supported by Natural Science and En-gineering Research Council of Canada(NSERC)grant.
文摘Plasma electrolytic oxidation(PEO),a promising surface treatment method to improve the corrosion and wear resistance of magnesium and its alloys,operates at high voltages,resulting in a relatively high energy cost.To make the PEO process more economically viable,its energy efficiency needs to be improved.This study investigates the growth behaviour and microstructural characteristics of low-energy PEO coatings on an AM50 magnesium alloy in a concentrated electrolyte containing sodium tetraborate.The surface morphology of the coatings was different from typical PEO coating morphologies and a large voltage oscillation was observed during treatment.Using different characterisation techniques,and based on a micro-discharge model,a correlation was made between the voltage-time behaviour,microdischarge characteristics and the composition and microstructure of the coated samples.The results suggest electrolyte chemistry can somewhat control discharge behaviour,which plays an important role in PEO coating growth.
基金Projects(41827805,41976044)supported by the National Natural Science Foundation of ChinaProject(ZDYF2021GXJS210)supported by the Hainan Provincial Science and Technology Special Fund,China+2 种基金Project(2021CXLH0005)supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City,ChinaProject(2021WHZZB2301)supported by the Wenhai Program of the S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology,ChinaProject(121311KYSB20210005)supported by the Overseas Science and Education Centers of Bureau of International Cooperation Chinese Academy of Sciences。
文摘Microarc oxidation is an effective surface treatment for improving certain properties of metals and their alloys.In this paper,TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were prepared on Ti-6Al-4V by microarc oxidation.Thecoatings exhibited good corrosion resistance and antimicrobial properties.X-ray diffraction(XRD),scanning electronmicroscopy(SEM),and 3D laser confocal were used to characterize the coatings.The properties of TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were analyzed,including microstructure,surface roughness,corrosion resistance,andantimicrobial properties.The electrochemical results showed that the coatings prepared by microarc oxidation hadenhanced corrosion resistance compared to the substrate.The antibacterial properties of TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coating against Pseudomonas aeruginosa were evaluated by fluorescence microscopy and plate counting.The antibacterial rate of TiO_(2)/Cu_(2)O@CeO_(2)coating was up to 99.70%.In summary,the TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings prepared by microarc oxidation have a potential application background in the field of marine corrosionprotection and biofouling.
基金This work was supported by the National Natural Science Foundation of China(No.52001034)the China Postdoctoral Science Foundation(No.2023M731677)the Major Project of 2025 Sci&Tech Innovation of Ningbo(No.2020Z096).
文摘This research systematically examined the degradation,antibacterial effects,and biocompatibility of micro-arc oxidation(MAO)coatings with nano CuO and ZnO on extruded Mg alloys.Both copper(Cu)and Zinc(Zn)possess antibacterial properties.The findings demonstrated that adding ZnO will appreciably reduce the degradation rate of MAO-coating alloy due to the self-sealing micro holes.CuO+MAO coating exhibited excellent antibacterial performance,with an antibacterial rate of over 90%within 6 h co-cultured with Staphylococcus aureus.Similarly,the antibacterial rate of ZnO+MAO coating reached 90%after 12 h co-culture.Cytotoxicity test using MG63 cell indicated that the incorporation of CuO and ZnO did not notably affect the cell viability rate of the coating.Moreover,after 14 days of culture,the CuO+MAO and ZnO+MAO coated samples exhibited higher alkaline phosphatase(ALP)activity than the MAO-coated and uncoated samples,suggesting favorable osteogenic properties.
文摘Recent research on microstructural characteristics and oxidation behavior of Ti(1-x)AlxN thin film were surveyed. The Ti(1-x)AlxN coatings have three different phase regions, Bl structure for lower x value, wurtzite structure for higher x value and unidentified structure for medium x value. Based upon the selective oxidation mechanism the oxidation results of Ti(1-x)AlxN thin film with different Ti/Al ratio were predicated.
文摘Magnesium and its alloys have been used in many industries, but they are reactive and require protection against aggressive environments. In this study, oxide coatings were applied on AZ91D magnesium alloy using micro-arc oxidation (MAO) process. Then, in order to seal the pores of the MAO coatings, the samples were immersed in cerium bath for different times. The surface morphologies and compositions of the coatings were analyzed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS), respectively. The corrosion behavior of the coatings was investigated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. The amount of the porosity of the coating was measured by electrochemical method. It was found that the sealing treatments by immersion in cerium bath successfully sealed the pores of the MAO coatings. The results of the corrosion tests showed that the MAO coating which was sealed in Ce bath for 10 min enhanced the corrosion resistance of the substrate significantly. Furthermore, this coating had the lowest amount of the porosity among the coatings.
基金supported by the National Natural Science Foundation of China (No. 51571134)the Scientific Research Foundation of Shandong University of Science and Technology (SDUST) for Recruited Talents (No. 2013RCJJ006)SDUST Research Fund (No. 2014TDJH104)
文摘A micro-arc oxidation(MAO)/zinc stearate(ZnSA) composite coating was fabricated via MAO processing and subsequent sealing with electrodeposition of a superhydrophobic ZnSA. The surface morphologies,chemical composition and corrosion resistance of the coatings were investigated using field-emission scanning electron microscopy, Fourier transform infrared, X-ray diffraction and electrochemical and hydrogen evolution measurements. Results indicated that the MAO coating was efficiently sealed by the following superhydrophobic ZnSA coating. The MAO/ZnSA composite coating significantly enhanced the corrosion resistance of Mg alloy Mg-4 Li-1 Ca due to its superhydrophobic function. Additionally, corrosion mechanism was suggested and discussed for the composite coating.
文摘Spraying test were conducted twice before steel slabs were put into the furnace and the effects of the oxidation resistance coating were investigated and verified. By comparing the change of slab weight, rolling force of the roughing mill & finishing mill, thickness of oxide film on the surface slabs by an XL-30 SEM and acid pickling speed of slabs with and without coating,it was found that the oxidization waste in the furnace decreased by 40 percent with the use of the coating and the corresponding yield capacity could increase by 0.2 percent at least. Besides, the thickness of oxide scale film on hot roiled products was reduced by 1.44 micrometers and the acid pickling time was shortened by 6s with the coating technology, while the total rolling force of RM & FM did not changed. Furthermore, the application prospect of this technology was also discussed in this paper.
基金financially supported by the National High Technology Research and Development Program of China (No. 2015AA033701)the Chinese Academy of Sciences-Croucher Founding Scheme for Joint Laboratories (Ref. CAS 14303)Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
文摘Considering the compatibility between degradation and bioactivity of magnesium-based implants for bone repair, micro-arc oxidation is used to modify the magnesium alloy surface in aqueous electrolytes, allowing strontium, calcium, and phosphorus to be incorporated into the coating. The thickness, composition, morphology and phase of this Sr-Ca-P containing coating are characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer and X-ray diffraction. The in vitro and in vivo degradation of the coating is evaluated by immersion test, electrochemical test and implantation test. Moreover, the cytocompatibility is tested with osteoblast cell according to ISO 10993. The results show that St, Ca and P elements are incorporated into the oxide coating, and a refined structure with tiny discharging micro-pores is observed on the surface of the coating. The Sr-Ca-P coating possesses a better corrosion resistance in vitro and retards the degradation in vivo. Such coating is expected to have significant medical applications on orthopedic implants and bone repair materials.
文摘The effect of sputtered Ti-50Al-10Cr and Ti-50A1-20Cr coatings on both isothermal and cyclic oxidation resistance at 800-900℃ and hot corrosion resistance at 850℃ of Ti-24Al-14Nb-3V was investigated. Results indicated that Ti-24Al-14Nb-3V alloys exhibited poor oxidation resistance due to the formation of Al2O3+TiO2+AlNbO4 mixed scales in air at 800-900℃ and poor hot corrosion resistance due to the spoliation of scales formed in Na2SO4+K2SO4 melts at 850℃. Both Ti-50Al-10Cr and Ti-50Al-20Cr coatings remarkably improved the oxidation and hot corrosion resistance of Ti-24Al-14Nb-3V alloy.
文摘A coating of composition Si-40Mo (wt pct) was prepared by fused slurry coating method on the two-dimensional carbon/carbon (2D-C/C) composite to improve oxidation resistance. In the procedure of the fabrication, pure St slurry inner layer in the pre-coating was necessary to apply because of infiltration of liquid Si into the substrate during the sintering. The coating consists of Si continuous phase and MoSi2 particles. In addition, the infiltration of Si into the substrate and the SiC reaction layer between the coating and the C/C composite were observed. Oxidation behavior of coated and uncoated C/C composites was studied in cyclic mode. The oxidation resistance and the thermal shock resistance of the Si-Mo fused slurry coating were quite excellent at 1370℃.
基金Funded by the Science and Technology Key Fund Project of Shanghai University of Engineering Science(cs1405015)the Graduate Research and Innovation Special Projects of Shanghai University of Engineering Science(15KY0501 and 14KY0515)
文摘YSZ/(Ni, Al) composite coatings with different Ni:Al mole ratios were deposited on superalloy Inconel 600 by electrophoretic deposition(EPD) technique, followed by sintering in CH_4 atmosphere at 1 100 ℃for 2 h and isothermally oxidation at 1000 ℃ for 50 h. After sintering at 1100 ℃ for 2 h in CH_4 atmosphere, besides ZrC and t-ZrO_2 phases, the phase constitutes of Ni:Al mole ratios with 1:3, 1:2, and 1:1 were(Zr, Al)C, AlNi_3 and Ni phases, respectively. A remarkable difference in the oxidation behaviors of YSZ/(Ni, Al) composite coatings with different Ni:Al mole ratios was observed. For YSZ(Ni:Al=1:3) coated sample, oxidation at 1000 ℃ causes decomposition of the(Zr,Al)C solid solution to metallic Al, and then most of the Al is oxidized to Al_2O_3. For the YSZ(Ni:Al=1:2) coated sample, oxidation at 1000 ℃ mainly causes decomposition of the AlNi_3 phase. For YSZ(Ni:Al=1:1) coated sample, after oxidation at 1000 ℃, most of the Ni is oxidized to Ni O phase, and tolerated 50 h of oxidation and finally cracked and spalled from the specimen. YSZ(Ni:Al=1:3) and YSZ(Ni:Al=1:2) coated samples show superior oxidation resistance than that of YSZ coating. The different oxidation resistance mechanisms of YSZ/(Ni, Al) composite coatings sintered in CH_4 atmosphere were discussed.
文摘Low and medium carbon steels were aluminized by the pack aluminizing technique using halideactivated pure-Al and Fe-Al packs. The effect of mixture composition, aluminizing temperatureand time and C content of the steel substrate on the structure and thickness of the aluminidelayer, and on the oxidation resistance was investigated. The optimum oxidation resistance canbe achieved with a low carbon steel substrate when the intermetallic phases Fe3Al and FeAlform the surface of the aluminide layer. In this case, the Al concentration at the surface of thealuminide coating is at least ≥15 wt pct. Formation of high Al concentration phases (FeAl3 andFe2Al5) during aluminizing should be avoided as they tend to embrittle the aluminide layer andreduce its oxidation resistance.
文摘The forming process of silicide coatings on pure Mo and Mo-base alloys, obtained by the gas- phase deposition method. has been studied by examining the microstructure of coatings and the relationship between coating thickness and process parameters. It was shown that the growth of coatings was diffusion-controlled, the diffusion of silicon to be coated into Mo or Mo-base alloys was mainly responsible for the formation of silicide. The relationship between initial silicide thickness and oxidation resistance was also investigated, and the equation of service life of the coatings at high temperature in air is presented.
基金Funded by the Key Projects in the National Science &Technology Pillar Program in the Twelfth Five-year Plan Period(No.2012BAB08B04)the National Natural Science Foundation of China(No.51202249)
文摘A kind of ceramic slurry was prepared and sprayed onto the surface of 9Ni steel at room temperature. The coating layer will not only reduce the depth of the formed Ni-enriched entanglement at high temperature but also have an excellent ability to resist oxidation of the 9Ni steel. Compared to bare specimen, the depths of the entanglement of the coated 9Ni specimen could be successfully reduced by 74.1% and the oxidation loss be decreased by 62.3% by heating at 1 250 ℃ for 60 min. In addition, the coated specimen indicates no trace of oxide pegs. It proves that the coating has outstanding improvement to internal oxidation resistance. Some characterization methods such as metalloscopy, XRD, XPS, SEM and EDX have been used to reveal a possible protective mechanism. The result shows that the coating layer reacts with the iron oxide to form Mg Fe2O4 on the surface of the coated specimen, which could provide a smaller diffusion coefficient rate of Fe ion. The coating with a low cost and easy implementation is promisingly applicable in the slab-reheating process of the 9Ni steel.
文摘CO2 laser quick assembly technology is adopted on the surface of cast aluminum ZL104 to form a dense ceramic coating containing a great deal of nanometer Al2O3/TiO2 particles which eliminate cracks and porosities.The major phases of the coating are α-Al2O3 andβ-TiO2. The micro-hardness distribution of the coating is 1 813,1 504, 1 485 and 1 232 (HV0.05). The bonding strength of the coating LC1 is 11.4 N, which is 7.26 times higher than that of the conventional hot-spraying Al2O3/TiO2 coating. It has been proved by analysis that the bonding strength is achieved because of the effects of both super-quick laser consolidation and the nanometer effect of nanometer ceramic material.
文摘The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electrochemical properties were studied by polarization curve and cyclic voltammetry. Trivalent chromium electroplating using Ti/IrO2+Ta2O5 anodes is carried out and the results were analyzed. Results show that this anode exhibits excellent electrochemical activity and stability in sulfate electrolysis. The electrocatalytic activity is determined not only by the content of IrO2 but also the structure and morphology of the anode coatings. The electroplating results indicats that Ti/IrO2+Ta2O5 anodes have excellent capabilities and merits in improving the stability of trivalent chromium electroplating in sulfate system.