期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Oxidation of propane to acrylic acid and acetic acid over alkaline earth-doped Mo-V-Sb-O_x catalysts 被引量:2
1
作者 Chandan S.Chaudhari Shailesh S.Sable +2 位作者 Hanumant Gurav Ashutosh A.Kelkar Vilas H.Rane 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第6期593-599,共7页
Alkaline earth metal (Mg,Ca,Sr and Ba)-doped Mo-V-Sb-O x catalysts,prepared by a dry-up method,have been investigated for their catalytic performance in the oxidation of propane under different reaction conditions.T... Alkaline earth metal (Mg,Ca,Sr and Ba)-doped Mo-V-Sb-O x catalysts,prepared by a dry-up method,have been investigated for their catalytic performance in the oxidation of propane under different reaction conditions.The catalysts have been characterized by N2 adsorption-desorption,temperature-programmed desorption (TPD) of NH3,SEM and XRD.Influence of water vapor on the catalytic performance,particularly on the selectivities to acetic acid and acrylic acid,has also been studied.The selectivity to acrylic acid was improved significantly by the doping of alkaline earth metals to Mo-V-Sb-O x catalysts.The surface acidic sites of the catalyst decreased with the doping of the catalyst with alkaline earth metals,which ultimately was found to be beneficial for obtaining high selectivity to acrylic acid.The catalytic activity and product selectivities were found to be influenced by the reaction temperature,C3H8/O2 ratio and space velocity.A significant improvement in the selectivity to acrylic acid has also been observed by the addition of water vapor in the feed of propane and oxygen in the oxidation of propane. 展开更多
关键词 oxidation of propane surface acidity alkaline earth doped Mo-V-Sb-Ox catalysts acrylic acid acetic acid
下载PDF
A mini review on oxidative dehydrogenation of propane over boron nitride catalysts
2
作者 Zhu Fu De-Zheng Li +5 位作者 Li-Dai Zhou Yu-Ming Li Jia-Wen Guo Yu-Qiao Li Hui-Min Liu Qi-Jian Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2488-2498,共11页
Oxidative dehydrogenation of propane is an attractive route for the synthesis of propylene due to its favorable thermodynamic and kinetic characteristics, however, it is challenging to realize high selectivity towards... Oxidative dehydrogenation of propane is an attractive route for the synthesis of propylene due to its favorable thermodynamic and kinetic characteristics, however, it is challenging to realize high selectivity towards propylene. Recently, it has been discovered that boron nitride (BN) is a promising catalyst that affords superior selectivity towards propylene in oxidative dehydrogenation of propane. Summarizing the progress and unravelling the reaction mechanism of BN in oxidative dehydrogenation of propane are of great significance for the rational design of efficient catalysts in the future. Herein, in this review, the underlying reaction mechanisms of oxidative dehydrogenation of propane over BN are extracted;the developed BN catalysts are classified into pristine BN, functionalized BN, supported BN and others, and the applications of each category of BN catalysts in oxidative dehydrogenation of propane are summarized;the challenges and opportunities on oxidative dehydrogenation of propane over BN are pointed out, aiming to inspire more studies and advance this research field. 展开更多
关键词 Oxidative dehydrogenation of propane Boron nitride PROPYLENE Reaction mechanism
下载PDF
Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane 被引量:5
3
作者 Ali Darvishi Razieh Davand +1 位作者 Farhad Khorasheh Moslem Fattahi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第5期612-622,共11页
An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular re- actors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of small diame... An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular re- actors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of small diameter tubes immersed in a shell through a proper coolant flows. Herein, a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence olefln over V2O5/γ-Al203 catalyst was presented. Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions, gas process and coolant temperatures, as well as other pa- rameters affecting the reactor performance such as pressure. Furthermore, the applied model showed that a double-bed multitubular reactor with intermediate air injection scheme was superior to a single-bed design due to the increasing of propylene selectivity while operating under lower oxygen partial pressures resulting in propane conversion of about 37.3%. The optimized length of the reactor needed to reach 100% conversion of the oxygen was theoretically determined. For the single-bed reactor the optimized length of 11.96 m including 0.5 m of inert section at the entrance region and for the double-bed reactor design the optimized lengths of 5.72 m for the first and 7.32 m for the second reactor were calculated. Ultimately, the use of a distributed oxygen feed with limited number of injection points indicated a significant improvement on the reactor performance in terms of propane conversion and propylene selectivity. Besides, this concept could overcome the reactor run- away temperature problem and enabled operations at the wider range of conditions to obtain enhanced propyl- ene production in an industrial scale reactor. 展开更多
关键词 Fixed-bed reactor Mathematical modeling Oxidative dehydrogenation of propane PROPYLENE V2O5/γ-Al203 catalyst OPTIMIZATION
下载PDF
Oxidative dehydrogenation of propane over Ni-Mo-Mg-O catalysts 被引量:5
4
作者 Lin Wang Wei Chu +3 位作者 Chengfa Jiang Yuefeng Liu Jie Wen Zaiku Xie 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第1期43-48,共6页
In this work, a series of Ni-Mo-Mg-O catalysts with mesoporous structure prepared by sol-gel method were investigated for the oxidative dehydrogenation of propane (ODHP). The techniques of temperature-programmed red... In this work, a series of Ni-Mo-Mg-O catalysts with mesoporous structure prepared by sol-gel method were investigated for the oxidative dehydrogenation of propane (ODHP). The techniques of temperature-programmed reduction with H2 (H2-TPR), N2 adsorption-desolption, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) were employed for catalyst characterization. It is found that the activity of the catalysts for ODHP increases first and then decreases with the increase of Mo content. The catalyst with a Mo/Ni atomic ratio of 1/1 exhibits the best catalytic activity, which gives the propene selectivity of 81.4% at a propane conversion of 11.3% under 600 ~C and maintains the good catalytic performance for 22 h on stream. This is related not only to its high reducibility and dispersion as revealed by TPR and XRD, but also to the formation of more selective oxygen species on the MoOz-NiO interface as identified by XPS. 展开更多
关键词 nickel oxide molybdenum oxide mole ratio oxidative dehydrogenation of propane PROPENE
下载PDF
OXIDATIVE DEHYDROGENATION OF PROPANE OVER MCl_n/V-Mg-O CATALYSTS
5
作者 Wei De ZHANG Zhi Min FANG Jia Ning JIANG Hui Lin WAN Qi Rui CAI Department of Chemistry,Xiamen University,Xiamen,361005 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第12期1061-1064,共4页
Oxidative dehydrogenation of propane over V-Mg-O and MCl_n(M=Cu^+,Li^+, Ag^+,Cd^(2+))promoted V-Mg-O catalysts was studied.XRD result showed that the V-Mg-O catalysts were composed of MgO and Mg_3(VO_4)_2.The yield of... Oxidative dehydrogenation of propane over V-Mg-O and MCl_n(M=Cu^+,Li^+, Ag^+,Cd^(2+))promoted V-Mg-O catalysts was studied.XRD result showed that the V-Mg-O catalysts were composed of MgO and Mg_3(VO_4)_2.The yield of propene was much higher over CuCl and LiCl promoted VMgO catalysts than that over VMgO catalysts at the same reaction temperature.The highest yield of propene reached 23.1% at 500℃ and 6000h^(-1) space velocity. 展开更多
关键词 OXIDATIVE DEHYDROGENATION of propane OVER MCl_n/V-Mg-O CATALYSTS XRD OVER than
下载PDF
Supported ZnO catalysts for the conversion of alkanes:About the metamorphosis of a heterogeneous catalyst 被引量:6
6
作者 S.Arndt B.Uysal +4 位作者 A.Berthold T.Otrebma Y.Aksu M.Driess R.Schomcker 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第5期581-594,共14页
ZnO could be a suitable catalyst for the oxidative conversion of CH4,C2H6 and C3H8.However,the main drawback is its thermal instability.Therefore,ZnO supported on ZrO 2,TiO2,γ-Al2O and SiO2 was investigated for the o... ZnO could be a suitable catalyst for the oxidative conversion of CH4,C2H6 and C3H8.However,the main drawback is its thermal instability.Therefore,ZnO supported on ZrO 2,TiO2,γ-Al2O and SiO2 was investigated for the oxidative dehydrogenation of propane and ethane,and the oxidative coupling of methane.The stability of the supported ZnO is partially improved,but ZnO reacts with the support material,forming new compounds (Zn-zirconates,-titanates,-aluminates and-silicates),which already occurs below reaction temperature.This might also be the case for many other heterogeneous catalysts. 展开更多
关键词 oxidative dehydrogenation oxidative coupling of methane oxidative dehydrogenation of ethane oxidative dehydrogenation of propane ZNO
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部