TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure ti...TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.展开更多
Oxidation treatment on the adsorption and the stability of Hg on activated carbon (AC) was inrestigated. Both MnO2-AC and FeCl3-AC were produced during oxidation treatment. The measurement of modified AC's mercury ...Oxidation treatment on the adsorption and the stability of Hg on activated carbon (AC) was inrestigated. Both MnO2-AC and FeCl3-AC were produced during oxidation treatment. The measurement of modified AC's mercury adsorption capacity was conducted in a simulated coal-fired flue gas by adsorbing test apparatus. TCLP and column leaching methods were used to test the stability of mercury adsorbed on ACs. The results indicate that the oxidation treatment changed the pore structure of the AC and modified the carbon surface by creating chemical components such as MnO4^-, Mn^4+, O, NO^3-, Fe^3+, Cl^-, etc. The Hg sorption capacity on MnO2-AC or FeCl3-AC was about three times higher than that of untreated carbon. In addition, the mercury control cost of each of the formers was about the half cost of the untreated carbon. The stability of Hg absorption was studied, it found that mercury adsorbed on the oxidation treated AC was not better than that of untreated carbon. It could concluded that the insoluble form of Hg is very important to the stability of mercury adsorbed on AC. This study suggests that the FeCl3-AC is the best absorbent for Hg with high adsorption capacity, better Hg adsorption stability in leaching environment, and lower cost among the three ACs tested.展开更多
The silica fiber reinforced silica and boron nitride-based composites (SiO2f/SiO2-BN) were prepared firstly via the sol-gel method and then the urea route, and the effects of oxidation treatment on the component, st...The silica fiber reinforced silica and boron nitride-based composites (SiO2f/SiO2-BN) were prepared firstly via the sol-gel method and then the urea route, and the effects of oxidation treatment on the component, structure, mechanical and dielectric properties of the composites were investigated. The results show that the oxidation treatment at 450 ℃ will not impair the structure of boron nitride, and carbon is the main impurity with the excessive urea. The density of SiO2f/SiO2-BN composites is 1.81 g/cm3, and the flexural strength and elastic modulus are 113.9 MPa and 36.5 GPa, respectively. After oxidation treatment, the density varies to 1.80 g/cm3, and the flexural strength and elastic modulus are decreased to 58.9 MPa and 9.4 GPa, respectively. The mechanical properties of the composites are severely damaged, but they still exhibit a good toughness. The composites show excellent dielectric properties with the dielectric constant and loss tangent being 3.22 and 0.003 9, respectively, which indicates that the oxidation treatment is ineffective to improve the dielectric properties of SiOzf/SiO2-BN composites.展开更多
Al/steel composite plate has a wide application prospect,but great differences in properties between Al and steel are observed.It is difficult to obtain high bonding strength by the traditional cold roll bonding proce...Al/steel composite plate has a wide application prospect,but great differences in properties between Al and steel are observed.It is difficult to obtain high bonding strength by the traditional cold roll bonding process.Al/steel composite plate was thus prepared by cold roll bonding at a reduction rate of 60%after oxidation treatment on the surface to be composited on the steel side.The heat treatment of holding at 400℃ for 1 h and cooling with the furnace was then adopted.The bonding strength,microstructure,and properties of the Al/steel composite plate before and after annealing were analysed and compared through shear test,bending test,tensile test,and micro-characterization.Results show that the shear strengths of the interface before and after annealing are 100 and 80 MPa,respectively.Although the shear strength of the annealed Al/steel composite plate decreases,the bending and overall tensile properties of the composite plate are improved,showing better mechanical properties.展开更多
Carbon Fiber (CF) reinforced polyetheretherketone (PEEK) composite is one of the most promising implant biomaterials used in orthopedics. In this article, unfilled PEEK and CF/PEEK specimens were prepared by vacuu...Carbon Fiber (CF) reinforced polyetheretherketone (PEEK) composite is one of the most promising implant biomaterials used in orthopedics. In this article, unfilled PEEK and CF/PEEK specimens were prepared by vacuum hot pressing method, and their tribological properties were evaluated by sliding against a cobalt-chromium-molybdenum (Co-Cr-Mo) alloy block. The influences of mass fraction of carbon fibers in CF/PEEK and the surface oxidation treatment of carbon fibers were explored. The results showed that the water contact angles on the surfaces of CF/PEEK specimens decreased, indicating that their surface wettability was improved. The hardness value of CF/PEEK was significantly improved, the friction coefficients of CF/PEEK were effectively reduced and its wear resistance was enhanced compared with unfilled PEEK. The leading effect on CF/PEEK tribological properties was the mass fraction of CF, followed by surface oxidation of CF, and the calf serum solution had better lubricity than that of saline and deionized water.展开更多
Thermal fatigue failure is one of the main failure forms of 8407 steel. Aiming at improving the anti-thermal-fatigue property of 8407 steel, the method of aluminization and subsequent oxidation is employed to form a c...Thermal fatigue failure is one of the main failure forms of 8407 steel. Aiming at improving the anti-thermal-fatigue property of 8407 steel, the method of aluminization and subsequent oxidation is employed to form a complex oxide on the die surface. Thermal fatigue test was performed with the cycle heating method to compare thermal fatigue behaviors of 8407 steel samples with and without aluminization and oxidation treatment. In the test, thermal fatigue crack morphology formed on the surface was observed by scanning electron microscope (SEM) and then variations of initiating rate and propagating rate of main crack of thermal fatigue with cycles were investigated. Moreover, the thermal fatigue property was judged according to thermal fatigue main crack length and its reciprocal. Finally, the anti-thermal-fatigue mechanism of oxide film was clarified. The results show that the surface aluminization and oxidation treatment can improve both the initiating resistance and propagating resistance of thermal fatigue crack, which will improve the anti-thermal-fatigue property of 8407 steel.展开更多
In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH t...In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH treatment solution. The infl uences of micro-arc oxidation parameters such as concentration of KF, concentration of KOH, output voltage of booster, temperature of treatment solution, and treatment time on treatment coating thickness were raveled out under different conditions. The structure and composition of treatment coating were determined, the growth mechanism of treatment coating was discussed, and the quick surface treatment technology for compact treatment coating with maximum thickness was developed. The experimental results show that: A maximum 33 μm-thick compact treatment coating, consisting of MgF2 and MgO mainly, can be formed on AZ31 B in 112 s under the conditions of 1 132 g/L KF, 382 g/L KOH, 66 V for output voltage of booster and 34 ℃ of treatment solution which were optimized by a genetic algorithm from the model established by artifi cial neural networks. There are no "crater-shaped" pores in this treatment coating as the heat shock resulting from the smooth variation of AC sinusoidal voltage is far smaller than that of the rigidly varied DC or pulse current. The treatment time is only one sixth of that adopted in the other surface treatment technology at best, principally for the reason that the coating can always grow irrespective of the electric potential of AZ31 B. This investigation lays a fi rm foundation for the extensive application of magnesium alloy.展开更多
A method for oxidative degradation of 1,4-dioxane (1,4-D) in waste water using a combination of ozone oxidation with UV irradiation (ozone/UV) treatment was investigated. The results showed that 1,4-D was degraded...A method for oxidative degradation of 1,4-dioxane (1,4-D) in waste water using a combination of ozone oxidation with UV irradiation (ozone/UV) treatment was investigated. The results showed that 1,4-D was degraded by ozone/UV treatment up to 90 min. The optimum concentration for the injected ozone gas was about 40 g·m^3 under a constant level of UV irradiation. Furthermore, solid phase extraction and GC-MS analysis showed no specific or reproducible peaks due to by-products of 1,4-D. It was therefore concluded that 1,4-D was completely degraded by ozone/UV treatment. In contrast, the amount of 1,4-D remaining decreased slowly in the presence of HCOf or CI. It was suggested that the degradation of 1,4-D, which results from .OH oxidation, was retarded by the presence of HCO3 or CI, which act as radical scavengers.展开更多
Steel H13 was put in non toxic salt bath with addition of CeO 2 for co diffusion of sulfur, nitrogen and carbon and followed by oxidation treatment. The effect of rare earths on the improvement of wear resistance a...Steel H13 was put in non toxic salt bath with addition of CeO 2 for co diffusion of sulfur, nitrogen and carbon and followed by oxidation treatment. The effect of rare earths on the improvement of wear resistance and high temperature oxidation resistance of steel H13 was studied using scanning electron microscope, energy dispersive spectrometry and X ray diffraction. The results show that compared to the surface treatment without rare earth addition, the treatment with addition of rare earths improves the wear resistance and high temperature resistance to oxidation of steel H13. Under the conditions of 30 N and 2 h, the wear weight loss was decreased by 40%, and the friction coefficient was reduced from 0 25 to 0 22; whereas for 150 N and 0 2 h, the wear weight loss was decreased by 24%, and the friction coefficient was reduced from 0 35 to 0 32. For the oxidation at 700 ℃ and 4 h, the rate of weight gain decreased to only about 1/30 of that without rare earths.展开更多
Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to elec...Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction(ORR)through a two-electron(2e^-)pathway is a very promising route to produce H2O2.In this work,we obtained partially oxidized multi-walled carbon nanotubes(MWCNTs)with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40℃ for 1 h(O-CNTs-40-1).The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups,while the inner layers are maintained intact.The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity.The results of rotating ring disk electrode measurements reveal that,among all oxidized MWCNTs,O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity(from ~ 30% to ~ 50%)and electron transfer number(from ~ 3.4 to ~ 3.0)compared to those of the raw MWCNTs.The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs.Finally,direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.展开更多
The amorphous boron nitride ceramic powders were prepared at 750-950 ℃ by the low-cost urea route, and the effects of preparation temperatures, molar ratios of the raw materials and oxidation treatment on the composi...The amorphous boron nitride ceramic powders were prepared at 750-950 ℃ by the low-cost urea route, and the effects of preparation temperatures, molar ratios of the raw materials and oxidation treatment on the composition, structure and surface morphology of the products were investigated through FT-IR, XRD and SEM. The results show that the products ceramize and crystallize gradually with the increase of the temperature. When the molar ratio and reaction temperature are 3:2 and 850 ℃, respectively, the products have high purity, compact structure and nice shape. The oxidation treatment at 450 ℃ will not impair the composition and structure of boron nitride but effectively remove the impurities.展开更多
Photodynamic therapy(PDT)-mediated oxidation treatment is extremely attractive for skin melanoma ablation,but the strong hydrophobicity and poor tumor selectivity of photosensitizers,as well as the oxygen-consuming pr...Photodynamic therapy(PDT)-mediated oxidation treatment is extremely attractive for skin melanoma ablation,but the strong hydrophobicity and poor tumor selectivity of photosensitizers,as well as the oxygen-consuming properties of PDT,leading to unsatisfactory therapeutic outcomes.Herein,a tumor acidic microenvironment activatable dissolving microneedle(DHA@HPFe-MN)was developed to realize controlled drug release and excellent chemo-photodynamic therapy of melanoma via oxidative stress amplification.The versatile DHA@HPFe-MN was fabricated by crosslinking a self-synthesized protoporphyrin(PpIX)-ADH-hyaluronic acid(HA)conjugate HA-ADH-PpIX with“iron reservoir”PA-Fe 3+complex in the needle tip via acylhydrazone bond formation,and dihydroartemisinin(DHA)was concurrently loaded in the hydrogel network.HA-ADH-PpIX with improved water solubility averted undesired aggregation of PpIX to ensure enhanced PDT effect.DHA@HPFe-MN with sharp needle tip,efficient drug loading and excellent mechanical strength could efficiently inserted into skin and reach the melanoma sites,where the acidic pH triggered the degradation of microneedles,enabling Fe-activated and DHA-mediated oxidation treatment,as evidenced by abundant reactive oxygen species(ROS)generation.Moreover,under light irradiation,a combined chemo-photodynamic therapeutic effect was achieved with amplified ROS generation.Importantly,the Fe-catalyzed ROS production of DHA was oxygen-independent,which work in synergy with the oxygen-dependent PDT to effectively destroy tumor cells.This versatile microneedles with excellent biosafety and biodegradability can be customized as a promising localized drug delivery system for combined chemo-photodynamic therapy of melanoma.展开更多
In the oxidation treatment of textile dyeing sludge,the quantitative and transformation laws of organic chlorine are not clear enough.Thus,this study mainly evaluated the treatment of textile dyeing sludge by Fenton a...In the oxidation treatment of textile dyeing sludge,the quantitative and transformation laws of organic chlorine are not clear enough.Thus,this study mainly evaluated the treatment of textile dyeing sludge by Fenton and Fenton-like system from the aspects of the influence of Cl^(-),the removal of polycyclic aromatic hydrocarbons (PAHs) and organic carbon,and the removal and formation mechanism of organic chlorine.The results showed that the organic halogen in sludge was mainly hydrophobic organic chlorine,and the content of adsorbable organic chlorine (AOCl) was 0.30 mg/g (dry sludge).In the Fenton system with pH=3,500 mg/L Cl-,30 mmol/L Fe^(2+)and 30 mmol/L H_(2)O_(2),the removal of phenanthrene was promoted by chlorine radicals (·Cl),and the AOCl in sludge solid phase increased to 0.55 mg/g (dry sludge) at 30 min.According to spectral analysis,it was found that ·Cl could chlorinate aromatic and aliphatic compounds (excluding PAHs) in solid phase at the same time,and eventually led to the accumulation of aromatic chlorides in solid phase.Strengthening the oxidation ability of Fenton system increased the formation of organic chlorines in liquid and solid phases.In weak acidity,the oxidation and desorption of superoxide anion promoted the removal and migration of PAHs and organic carbon in solid phase,and reduced the formation of total organic chlorine.The Fenton-like system dominated by nonhydroxyl radical could realize the mineralization of PAHs,organic carbon and organic chlorines instead of migration.This paper builds a basis for the selection of sludge conditioning methods.展开更多
Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorpho...Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.展开更多
Titanium hydride attracts more attention as foaming agent in the fabrication of cellular metal materials. In order to meet most aluminum casting alloy's melting properties, the heat treatment processes for Till2 part...Titanium hydride attracts more attention as foaming agent in the fabrication of cellular metal materials. In order to meet most aluminum casting alloy's melting properties, the heat treatment processes for Till2 particles were investigated in a rotating device. In the present work, the most two important dynamic parameters, the treating temperature and oxidation interval, were taken under consideration. The decomposition behavior of titanium hydride was measured by differential scanning calorimetry (DSC) and the residual hydrogen content, morphologies and phase conversion were also characterized by hydrogen determinator, scanning electron microscopy (SEM), and X-ray diffractometer (XRD), respectively. The results show that the effect of temperature on the formation of oxidation film and decomposition behavior of Till2 is more significant than that of oxidation time. The onset temper- ature and peak value of Till2 decomposition shift from left to right through elevating temperature and extending time. Heat treatment process for Till2 at 500 ℃ between 1 and 5 h in air is favorable for preparing aluminum foam.展开更多
By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically i...By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically investigated by using dry sliding tests,a 3D surface profile-meter and a scanning electron microscope equipped with an energy-dispersive spectrometer.The experimental results indicate that the Mg alloy with GNS exhibits better wear resistance comparing to the as-received sample,which is associated to the alteration of wear mechanism at different sliding speeds.The Mg alloy with GNS presents the wear mechanism of the abrasive wear at 0.05 m/s and the oxidative wear at 0.5 m/s,respectively.Moreover,the GNS can effectively promote the reaction between the oxygen and worn surface,which leads to a compact oxidation layer at 0.5 m/s.The effect of oxidation layer on the wear resistance of the Mg alloy was also discussed.展开更多
Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A^2O) and anaerobic/anoxic/aerobic (A^2O), were selected to investigate the emission characteristics of gr...Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A^2O) and anaerobic/anoxic/aerobic (A^2O), were selected to investigate the emission characteristics of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Results showed that although the processes were different, the units presenting high GHG emission fluxes were remarkably similar, namely the highest CO2 and N2O emission fluxes occurred in the aerobic areas, and the highest CH4 emission fluxes occurred in the grit tanks. The GHG emission amount of each unit can be calculated from its area and GHG emission flux. The calculation results revealed that the maximum emission amounts of CO2, CH4 and N2O in the three wastewater treatment processes appeared in the aerobic areas in all cases. Theoretically, CH4 should be produced in anaerobic conditions, rather than aerobic conditions. However, results in this study showed that the CH4 emission fluxes in the forepart of the aerobic area were distinctly higher than in the anaerobic area. The situation for N2O was similar to that of CH4: the N2O emission flux in the aerobic area was also higher than that in the anoxic area. Through analysis of the GHG mass balance, it was found that the flow of dissolved GHG in the wastewater treatment processes and aerators may be the main reason for this phenomenon. Based on the monitoring and calculation results, GHG emission factors for the three wastewater treatment processes were determined. The A^2O process had the highest CO2 emission factor of 319.3 g CO2/kg CODremoved, and the highest CH4 and N2O emission factors of 3.3 g CH4/kg CODremoved and 3.6 g N2O/kg TNremoved were observed in the Orbal oxidation ditch process.展开更多
Titanium metals and its alloy have been widely used in hard tissue repairing fields due to their good biocampatibility and mechanical properties. However, bioinert response and biomaterial associated infections are th...Titanium metals and its alloy have been widely used in hard tissue repairing fields due to their good biocampatibility and mechanical properties. However, bioinert response and biomaterial associated infections are the main problems for their clinical application. In this study, we chose titanium plates treated with anodic oxidation (AO-Ti), alkali-heat (AH-Ti) and acid-alkali (AA-Ti) methods, which have been proved to be bioactive in vivo, to culture with Staphylococcus aureus and Escherichia coli to investigate the interaction between bioactive titanium surfaces and biofilm. We used X-ray diffraction (XRD), Scanning Electron Microscope (SEM), roughness measurement to study the physical-chemical properties of the as-received bioactive titanium surfaces, and Confocal Laser Scanning Microscope (CLSM) was employed to study the properties of biofilm formed on the biomaterial surfaces. The results indicate that the titanium surface subjected to anodic oxidation treatment is unfavorable for the formation ofbiofilm in vitro because the titania (TiO2) coating formed by anodizing has superior antimicrobial property than the other surfaces. Therefore, anodic oxidation surface modification is effective to endow titanium surface with bioactivity and antimicrobial property, which has the potential to improve the successful rate of the clinical application of titanium implants.展开更多
The current work deals with ZnO-Ag nanocomposites(in the wide range of x in the Zn1-x O-Ag x chemical composition) synthesized using microwave assisted solution combustion method.The structural, morphological and op...The current work deals with ZnO-Ag nanocomposites(in the wide range of x in the Zn1-x O-Ag x chemical composition) synthesized using microwave assisted solution combustion method.The structural, morphological and optical properties of the samples were characterized by XRD(X-ray diffraction), FTIR(Fourier transform infrared spectrometry), SEM(scanning electron microscopy technique), EDX(energy dispersive X-ray spectrum), ICP(inductively coupled plasma technique), TEM(transmission electron microscopy), BET(Brunauer–Emmett–Teller method), UV–Vis(ultraviolet–visible spectrophotometer) and photoluminescence spectrophotometer. The photocatalytic activity of the ZnO-Ag was investigated by photo-degradation of Acid Blue 113(AB 113) under UV illumination in a semi-batch reactor. This experiment showed that ZnO-Ag has much more excellent photocatalytic properties than ZnO synthesized by the same method. The enhanced photocatalytic activity was due to the decrease in recombination of photogenerated electron-holes. The results showed the improvement of ZnO photocatalytic activity and there is an optimum amount of Ag(3.5 mol%) that needs to be doped with ZnO.The effect of operating parameters such as p H, catalyst dose and dye concentration were investigated. The reaction byproducts were identified by LC/MS(liquid chromatography/mass spectrometry) analysis and a pathway was proposed as well. Kinetic studies indicated that the decolorization process follows the first order kinetics. Also, the degradation percentage of AB113 was determined using a total organic carbon(TOC) analyzer. Additionally, cost analysis of the process, the mechanism and the role of Ag were discussed.展开更多
A nanostructured ternary coating of Ti/(Ru + Ti + Ce)O2 was prepared by the conventional electrodeposition on the titanium substrate as the cathode with different numbers of coating layers. The main objective of t...A nanostructured ternary coating of Ti/(Ru + Ti + Ce)O2 was prepared by the conventional electrodeposition on the titanium substrate as the cathode with different numbers of coating layers. The main objective of this work was to study nanostructured coatings of ceramic materials. For this purpose, the amount of precursor materials in the electrolyte was a variable parameter. Furthermore, the salt of TiCl4/RuCl3·xH2 O/Ce(NO3)3·6 H2 O with different amounts, hydrogen peroxide, methanol, and distilled water were used as an aqueousunaqueous bath. In addition, the coated samples were put to heat at 300, 450, 650, and 850℃ in an electric furnace for1 h. The crystalline phase of the coating was characterized by X-ray diffraction(XRD). The chemical composition and microstructure of the coating were studied using energydispersive spectroscopy(EDS) and scanning electron microscopy analysis(SEM). Moreover, the electrochemical measurement of Ti/(Ru + Ti + Ce)O2 coatings was carried out. Results show that with the increase in the number of coating layers, the quality of morphology is improved.Then, the best quality of coatings is obtained at six layers on the titanium substrate with electrolyte including TiO2/RuO2/CeO2 with the molar ratio of 70:5:25 after heat treatment at 450 ℃ for 1 h. Besides,with the increase in Ce02 content from 5 wt% to 25 wt% and the number of coating layers, higher thickness of about(20.0±0.1) μm and minimum over potential for chlorine evolution were obtained.展开更多
基金supports from the National Natural Science Foundation of China(Nos.52075472,52004242)the National Key Research and Development Program of China(No.2018YFA0707300)the Natural Science Foundation of Hebei Province,China(No.E2020203001)。
文摘TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.
基金The National Natural Science Foundation of China (No. 50476056) the Hi-Tech Research and Development Program (863) ofChina (No. 2005AA520080)
文摘Oxidation treatment on the adsorption and the stability of Hg on activated carbon (AC) was inrestigated. Both MnO2-AC and FeCl3-AC were produced during oxidation treatment. The measurement of modified AC's mercury adsorption capacity was conducted in a simulated coal-fired flue gas by adsorbing test apparatus. TCLP and column leaching methods were used to test the stability of mercury adsorbed on ACs. The results indicate that the oxidation treatment changed the pore structure of the AC and modified the carbon surface by creating chemical components such as MnO4^-, Mn^4+, O, NO^3-, Fe^3+, Cl^-, etc. The Hg sorption capacity on MnO2-AC or FeCl3-AC was about three times higher than that of untreated carbon. In addition, the mercury control cost of each of the formers was about the half cost of the untreated carbon. The stability of Hg absorption was studied, it found that mercury adsorbed on the oxidation treated AC was not better than that of untreated carbon. It could concluded that the insoluble form of Hg is very important to the stability of mercury adsorbed on AC. This study suggests that the FeCl3-AC is the best absorbent for Hg with high adsorption capacity, better Hg adsorption stability in leaching environment, and lower cost among the three ACs tested.
基金Projects(50902150,90916019) supported by the National Natural Science Foundation of ChinaProject (9140C8203040905) supported by the State Key Laboratory Foundation of ChinaProject(S100103) supported by the Graduate Innovation Foundation of National University of Defense Technology,China
文摘The silica fiber reinforced silica and boron nitride-based composites (SiO2f/SiO2-BN) were prepared firstly via the sol-gel method and then the urea route, and the effects of oxidation treatment on the component, structure, mechanical and dielectric properties of the composites were investigated. The results show that the oxidation treatment at 450 ℃ will not impair the structure of boron nitride, and carbon is the main impurity with the excessive urea. The density of SiO2f/SiO2-BN composites is 1.81 g/cm3, and the flexural strength and elastic modulus are 113.9 MPa and 36.5 GPa, respectively. After oxidation treatment, the density varies to 1.80 g/cm3, and the flexural strength and elastic modulus are decreased to 58.9 MPa and 9.4 GPa, respectively. The mechanical properties of the composites are severely damaged, but they still exhibit a good toughness. The composites show excellent dielectric properties with the dielectric constant and loss tangent being 3.22 and 0.003 9, respectively, which indicates that the oxidation treatment is ineffective to improve the dielectric properties of SiOzf/SiO2-BN composites.
基金the National Key Research and Development Program of China(Grant No.2018YFA0707300)the National Natural Science Foundation of China(Grant Nos.52075472 and 52004242)the National Science Foundation of Hebei Province(Grant No.E2020203001).
文摘Al/steel composite plate has a wide application prospect,but great differences in properties between Al and steel are observed.It is difficult to obtain high bonding strength by the traditional cold roll bonding process.Al/steel composite plate was thus prepared by cold roll bonding at a reduction rate of 60%after oxidation treatment on the surface to be composited on the steel side.The heat treatment of holding at 400℃ for 1 h and cooling with the furnace was then adopted.The bonding strength,microstructure,and properties of the Al/steel composite plate before and after annealing were analysed and compared through shear test,bending test,tensile test,and micro-characterization.Results show that the shear strengths of the interface before and after annealing are 100 and 80 MPa,respectively.Although the shear strength of the annealed Al/steel composite plate decreases,the bending and overall tensile properties of the composite plate are improved,showing better mechanical properties.
基金The authors wish to express thanks to the financial support of National Natural Science Foundation of China (Nos. 51575278 and 51711530228), Science and Technology Project of Jiangsu Province (Nos. BY2016004-08 and BA2015054), the Funda- mental Research Funds for the Central Universities (No. 30910612203). A project funded by the Priority Aca- demic Program Development of Jiangsu Higher Educa- tion Institutions (PAPD). Finally, we also give thanks to the support from Jiangsu Key Laboratory of Advanced Micro/Nano Materials and Technologies.
文摘Carbon Fiber (CF) reinforced polyetheretherketone (PEEK) composite is one of the most promising implant biomaterials used in orthopedics. In this article, unfilled PEEK and CF/PEEK specimens were prepared by vacuum hot pressing method, and their tribological properties were evaluated by sliding against a cobalt-chromium-molybdenum (Co-Cr-Mo) alloy block. The influences of mass fraction of carbon fibers in CF/PEEK and the surface oxidation treatment of carbon fibers were explored. The results showed that the water contact angles on the surfaces of CF/PEEK specimens decreased, indicating that their surface wettability was improved. The hardness value of CF/PEEK was significantly improved, the friction coefficients of CF/PEEK were effectively reduced and its wear resistance was enhanced compared with unfilled PEEK. The leading effect on CF/PEEK tribological properties was the mass fraction of CF, followed by surface oxidation of CF, and the calf serum solution had better lubricity than that of saline and deionized water.
基金Item Sponsored by Beijing Company Limited of ASSAB Tooling(2008-0-1-207)
文摘Thermal fatigue failure is one of the main failure forms of 8407 steel. Aiming at improving the anti-thermal-fatigue property of 8407 steel, the method of aluminization and subsequent oxidation is employed to form a complex oxide on the die surface. Thermal fatigue test was performed with the cycle heating method to compare thermal fatigue behaviors of 8407 steel samples with and without aluminization and oxidation treatment. In the test, thermal fatigue crack morphology formed on the surface was observed by scanning electron microscope (SEM) and then variations of initiating rate and propagating rate of main crack of thermal fatigue with cycles were investigated. Moreover, the thermal fatigue property was judged according to thermal fatigue main crack length and its reciprocal. Finally, the anti-thermal-fatigue mechanism of oxide film was clarified. The results show that the surface aluminization and oxidation treatment can improve both the initiating resistance and propagating resistance of thermal fatigue crack, which will improve the anti-thermal-fatigue property of 8407 steel.
基金Funded by the National Natural Science Foundation of China(No.50974010)the Natural Science Foundation of Beijing City,China(No.2102039)
文摘In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH treatment solution. The infl uences of micro-arc oxidation parameters such as concentration of KF, concentration of KOH, output voltage of booster, temperature of treatment solution, and treatment time on treatment coating thickness were raveled out under different conditions. The structure and composition of treatment coating were determined, the growth mechanism of treatment coating was discussed, and the quick surface treatment technology for compact treatment coating with maximum thickness was developed. The experimental results show that: A maximum 33 μm-thick compact treatment coating, consisting of MgF2 and MgO mainly, can be formed on AZ31 B in 112 s under the conditions of 1 132 g/L KF, 382 g/L KOH, 66 V for output voltage of booster and 34 ℃ of treatment solution which were optimized by a genetic algorithm from the model established by artifi cial neural networks. There are no "crater-shaped" pores in this treatment coating as the heat shock resulting from the smooth variation of AC sinusoidal voltage is far smaller than that of the rigidly varied DC or pulse current. The treatment time is only one sixth of that adopted in the other surface treatment technology at best, principally for the reason that the coating can always grow irrespective of the electric potential of AZ31 B. This investigation lays a fi rm foundation for the extensive application of magnesium alloy.
文摘A method for oxidative degradation of 1,4-dioxane (1,4-D) in waste water using a combination of ozone oxidation with UV irradiation (ozone/UV) treatment was investigated. The results showed that 1,4-D was degraded by ozone/UV treatment up to 90 min. The optimum concentration for the injected ozone gas was about 40 g·m^3 under a constant level of UV irradiation. Furthermore, solid phase extraction and GC-MS analysis showed no specific or reproducible peaks due to by-products of 1,4-D. It was therefore concluded that 1,4-D was completely degraded by ozone/UV treatment. In contrast, the amount of 1,4-D remaining decreased slowly in the presence of HCOf or CI. It was suggested that the degradation of 1,4-D, which results from .OH oxidation, was retarded by the presence of HCO3 or CI, which act as radical scavengers.
文摘Steel H13 was put in non toxic salt bath with addition of CeO 2 for co diffusion of sulfur, nitrogen and carbon and followed by oxidation treatment. The effect of rare earths on the improvement of wear resistance and high temperature oxidation resistance of steel H13 was studied using scanning electron microscope, energy dispersive spectrometry and X ray diffraction. The results show that compared to the surface treatment without rare earth addition, the treatment with addition of rare earths improves the wear resistance and high temperature resistance to oxidation of steel H13. Under the conditions of 30 N and 2 h, the wear weight loss was decreased by 40%, and the friction coefficient was reduced from 0 25 to 0 22; whereas for 150 N and 0 2 h, the wear weight loss was decreased by 24%, and the friction coefficient was reduced from 0 35 to 0 32. For the oxidation at 700 ℃ and 4 h, the rate of weight gain decreased to only about 1/30 of that without rare earths.
基金supported by the National Natural Science Foundation of China(21576299,21576300)Guangzhou Science and Technology Project(201607010104,201707010079)+3 种基金Science and Technology Planning Project of Guangdong Province(2017A050501009)the National Key Research and Development Program of China(2016YFB0101204)Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(2016TQ03N322)the fundamental Research Funds for Central Universities(17lgzd14)~~
文摘Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction(ORR)through a two-electron(2e^-)pathway is a very promising route to produce H2O2.In this work,we obtained partially oxidized multi-walled carbon nanotubes(MWCNTs)with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40℃ for 1 h(O-CNTs-40-1).The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups,while the inner layers are maintained intact.The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity.The results of rotating ring disk electrode measurements reveal that,among all oxidized MWCNTs,O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity(from ~ 30% to ~ 50%)and electron transfer number(from ~ 3.4 to ~ 3.0)compared to those of the raw MWCNTs.The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs.Finally,direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.
基金Funded by the National Natural Science Foundation of China (Nos.50902150 & 90916019)the Graduate Innovation Foundation of the National University of Defense Technology(No.S100103)
文摘The amorphous boron nitride ceramic powders were prepared at 750-950 ℃ by the low-cost urea route, and the effects of preparation temperatures, molar ratios of the raw materials and oxidation treatment on the composition, structure and surface morphology of the products were investigated through FT-IR, XRD and SEM. The results show that the products ceramize and crystallize gradually with the increase of the temperature. When the molar ratio and reaction temperature are 3:2 and 850 ℃, respectively, the products have high purity, compact structure and nice shape. The oxidation treatment at 450 ℃ will not impair the composition and structure of boron nitride but effectively remove the impurities.
基金supported by the National Natural Science Foundation of China(Grant number:81973256/H3008)Guangdong Basic and Applied Basic Research Foundation(Grant number:2021A1515010475)the Fundamental Research Funds for the Central Universities(22qntd4505).
文摘Photodynamic therapy(PDT)-mediated oxidation treatment is extremely attractive for skin melanoma ablation,but the strong hydrophobicity and poor tumor selectivity of photosensitizers,as well as the oxygen-consuming properties of PDT,leading to unsatisfactory therapeutic outcomes.Herein,a tumor acidic microenvironment activatable dissolving microneedle(DHA@HPFe-MN)was developed to realize controlled drug release and excellent chemo-photodynamic therapy of melanoma via oxidative stress amplification.The versatile DHA@HPFe-MN was fabricated by crosslinking a self-synthesized protoporphyrin(PpIX)-ADH-hyaluronic acid(HA)conjugate HA-ADH-PpIX with“iron reservoir”PA-Fe 3+complex in the needle tip via acylhydrazone bond formation,and dihydroartemisinin(DHA)was concurrently loaded in the hydrogel network.HA-ADH-PpIX with improved water solubility averted undesired aggregation of PpIX to ensure enhanced PDT effect.DHA@HPFe-MN with sharp needle tip,efficient drug loading and excellent mechanical strength could efficiently inserted into skin and reach the melanoma sites,where the acidic pH triggered the degradation of microneedles,enabling Fe-activated and DHA-mediated oxidation treatment,as evidenced by abundant reactive oxygen species(ROS)generation.Moreover,under light irradiation,a combined chemo-photodynamic therapeutic effect was achieved with amplified ROS generation.Importantly,the Fe-catalyzed ROS production of DHA was oxygen-independent,which work in synergy with the oxygen-dependent PDT to effectively destroy tumor cells.This versatile microneedles with excellent biosafety and biodegradability can be customized as a promising localized drug delivery system for combined chemo-photodynamic therapy of melanoma.
基金supported by the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (No.2017BT01Z032)the National Natural Science Foundation of China (No.21577027)。
文摘In the oxidation treatment of textile dyeing sludge,the quantitative and transformation laws of organic chlorine are not clear enough.Thus,this study mainly evaluated the treatment of textile dyeing sludge by Fenton and Fenton-like system from the aspects of the influence of Cl^(-),the removal of polycyclic aromatic hydrocarbons (PAHs) and organic carbon,and the removal and formation mechanism of organic chlorine.The results showed that the organic halogen in sludge was mainly hydrophobic organic chlorine,and the content of adsorbable organic chlorine (AOCl) was 0.30 mg/g (dry sludge).In the Fenton system with pH=3,500 mg/L Cl-,30 mmol/L Fe^(2+)and 30 mmol/L H_(2)O_(2),the removal of phenanthrene was promoted by chlorine radicals (·Cl),and the AOCl in sludge solid phase increased to 0.55 mg/g (dry sludge) at 30 min.According to spectral analysis,it was found that ·Cl could chlorinate aromatic and aliphatic compounds (excluding PAHs) in solid phase at the same time,and eventually led to the accumulation of aromatic chlorides in solid phase.Strengthening the oxidation ability of Fenton system increased the formation of organic chlorines in liquid and solid phases.In weak acidity,the oxidation and desorption of superoxide anion promoted the removal and migration of PAHs and organic carbon in solid phase,and reduced the formation of total organic chlorine.The Fenton-like system dominated by nonhydroxyl radical could realize the mineralization of PAHs,organic carbon and organic chlorines instead of migration.This paper builds a basis for the selection of sludge conditioning methods.
基金Project(S2013040015492)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2007AA03Z240)supported by Hi-tech Research and Development Program of China
文摘Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.
基金financially supported by the National Natural Science Foundation of China (No. 51174060)the Science and Technology Department of Liaoning Province of China (No. 2013223004)
文摘Titanium hydride attracts more attention as foaming agent in the fabrication of cellular metal materials. In order to meet most aluminum casting alloy's melting properties, the heat treatment processes for Till2 particles were investigated in a rotating device. In the present work, the most two important dynamic parameters, the treating temperature and oxidation interval, were taken under consideration. The decomposition behavior of titanium hydride was measured by differential scanning calorimetry (DSC) and the residual hydrogen content, morphologies and phase conversion were also characterized by hydrogen determinator, scanning electron microscopy (SEM), and X-ray diffractometer (XRD), respectively. The results show that the effect of temperature on the formation of oxidation film and decomposition behavior of Till2 is more significant than that of oxidation time. The onset temper- ature and peak value of Till2 decomposition shift from left to right through elevating temperature and extending time. Heat treatment process for Till2 at 500 ℃ between 1 and 5 h in air is favorable for preparing aluminum foam.
基金National Key Research and Development Program(No.2016YFB0701201)National Natural Science Foundation of China(Nos.51671101,51464034)+3 种基金Natural Science foundation of Jiangxi Province(No.20161ACB21003)the Scientific Research Foundation of the Education Department of Jiangxi Province(No.GJJ150010)the financial support provided by the Croucher Foundation(No.9500006)Hong Kong Collaborative Research Fund(CRF)Scheme(No.C4028-14G)
文摘By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically investigated by using dry sliding tests,a 3D surface profile-meter and a scanning electron microscope equipped with an energy-dispersive spectrometer.The experimental results indicate that the Mg alloy with GNS exhibits better wear resistance comparing to the as-received sample,which is associated to the alteration of wear mechanism at different sliding speeds.The Mg alloy with GNS presents the wear mechanism of the abrasive wear at 0.05 m/s and the oxidative wear at 0.5 m/s,respectively.Moreover,the GNS can effectively promote the reaction between the oxygen and worn surface,which leads to a compact oxidation layer at 0.5 m/s.The effect of oxidation layer on the wear resistance of the Mg alloy was also discussed.
基金supported by the National Natural Science Foundation of China (No. 51138009)
文摘Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A^2O) and anaerobic/anoxic/aerobic (A^2O), were selected to investigate the emission characteristics of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Results showed that although the processes were different, the units presenting high GHG emission fluxes were remarkably similar, namely the highest CO2 and N2O emission fluxes occurred in the aerobic areas, and the highest CH4 emission fluxes occurred in the grit tanks. The GHG emission amount of each unit can be calculated from its area and GHG emission flux. The calculation results revealed that the maximum emission amounts of CO2, CH4 and N2O in the three wastewater treatment processes appeared in the aerobic areas in all cases. Theoretically, CH4 should be produced in anaerobic conditions, rather than aerobic conditions. However, results in this study showed that the CH4 emission fluxes in the forepart of the aerobic area were distinctly higher than in the anaerobic area. The situation for N2O was similar to that of CH4: the N2O emission flux in the aerobic area was also higher than that in the anoxic area. Through analysis of the GHG mass balance, it was found that the flow of dissolved GHG in the wastewater treatment processes and aerators may be the main reason for this phenomenon. Based on the monitoring and calculation results, GHG emission factors for the three wastewater treatment processes were determined. The A^2O process had the highest CO2 emission factor of 319.3 g CO2/kg CODremoved, and the highest CH4 and N2O emission factors of 3.3 g CH4/kg CODremoved and 3.6 g N2O/kg TNremoved were observed in the Orbal oxidation ditch process.
文摘Titanium metals and its alloy have been widely used in hard tissue repairing fields due to their good biocampatibility and mechanical properties. However, bioinert response and biomaterial associated infections are the main problems for their clinical application. In this study, we chose titanium plates treated with anodic oxidation (AO-Ti), alkali-heat (AH-Ti) and acid-alkali (AA-Ti) methods, which have been proved to be bioactive in vivo, to culture with Staphylococcus aureus and Escherichia coli to investigate the interaction between bioactive titanium surfaces and biofilm. We used X-ray diffraction (XRD), Scanning Electron Microscope (SEM), roughness measurement to study the physical-chemical properties of the as-received bioactive titanium surfaces, and Confocal Laser Scanning Microscope (CLSM) was employed to study the properties of biofilm formed on the biomaterial surfaces. The results indicate that the titanium surface subjected to anodic oxidation treatment is unfavorable for the formation ofbiofilm in vitro because the titania (TiO2) coating formed by anodizing has superior antimicrobial property than the other surfaces. Therefore, anodic oxidation surface modification is effective to endow titanium surface with bioactivity and antimicrobial property, which has the potential to improve the successful rate of the clinical application of titanium implants.
文摘The current work deals with ZnO-Ag nanocomposites(in the wide range of x in the Zn1-x O-Ag x chemical composition) synthesized using microwave assisted solution combustion method.The structural, morphological and optical properties of the samples were characterized by XRD(X-ray diffraction), FTIR(Fourier transform infrared spectrometry), SEM(scanning electron microscopy technique), EDX(energy dispersive X-ray spectrum), ICP(inductively coupled plasma technique), TEM(transmission electron microscopy), BET(Brunauer–Emmett–Teller method), UV–Vis(ultraviolet–visible spectrophotometer) and photoluminescence spectrophotometer. The photocatalytic activity of the ZnO-Ag was investigated by photo-degradation of Acid Blue 113(AB 113) under UV illumination in a semi-batch reactor. This experiment showed that ZnO-Ag has much more excellent photocatalytic properties than ZnO synthesized by the same method. The enhanced photocatalytic activity was due to the decrease in recombination of photogenerated electron-holes. The results showed the improvement of ZnO photocatalytic activity and there is an optimum amount of Ag(3.5 mol%) that needs to be doped with ZnO.The effect of operating parameters such as p H, catalyst dose and dye concentration were investigated. The reaction byproducts were identified by LC/MS(liquid chromatography/mass spectrometry) analysis and a pathway was proposed as well. Kinetic studies indicated that the decolorization process follows the first order kinetics. Also, the degradation percentage of AB113 was determined using a total organic carbon(TOC) analyzer. Additionally, cost analysis of the process, the mechanism and the role of Ag were discussed.
基金financially supported by the Semnan University Foundation of Iran
文摘A nanostructured ternary coating of Ti/(Ru + Ti + Ce)O2 was prepared by the conventional electrodeposition on the titanium substrate as the cathode with different numbers of coating layers. The main objective of this work was to study nanostructured coatings of ceramic materials. For this purpose, the amount of precursor materials in the electrolyte was a variable parameter. Furthermore, the salt of TiCl4/RuCl3·xH2 O/Ce(NO3)3·6 H2 O with different amounts, hydrogen peroxide, methanol, and distilled water were used as an aqueousunaqueous bath. In addition, the coated samples were put to heat at 300, 450, 650, and 850℃ in an electric furnace for1 h. The crystalline phase of the coating was characterized by X-ray diffraction(XRD). The chemical composition and microstructure of the coating were studied using energydispersive spectroscopy(EDS) and scanning electron microscopy analysis(SEM). Moreover, the electrochemical measurement of Ti/(Ru + Ti + Ce)O2 coatings was carried out. Results show that with the increase in the number of coating layers, the quality of morphology is improved.Then, the best quality of coatings is obtained at six layers on the titanium substrate with electrolyte including TiO2/RuO2/CeO2 with the molar ratio of 70:5:25 after heat treatment at 450 ℃ for 1 h. Besides,with the increase in Ce02 content from 5 wt% to 25 wt% and the number of coating layers, higher thickness of about(20.0±0.1) μm and minimum over potential for chlorine evolution were obtained.