期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Elemental Geochemistry of the Interlayer Oxidation Zonein the Shihongtan Sandstone Type Uranium Deposit, Xinjiang 被引量:4
1
作者 CAI Genqing ZHANG Zimin LI Shengxiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第6期835-842,共8页
According to the oxidation intensity of ore-hosting sandstone, the interlayer oxidation zone of the Shihongtan sandstone-type uranium deposit in the Turpan-Hami basin can be divided into 4 geochemical subzones, namely... According to the oxidation intensity of ore-hosting sandstone, the interlayer oxidation zone of the Shihongtan sandstone-type uranium deposit in the Turpan-Hami basin can be divided into 4 geochemical subzones, namely, intenselyoxidized, weakly-oxidized, redox and unoxidized primary subzones. The elemental geochemical characteristics of the four subzones have been studied in detail, and the results show that U, together with other elements such as Re, Mo, Se, Sr, S, REE, Corganic etc., is enriched in the redox subzone. Re and U have similar geochemical properties in the reductionoxidation process. The geochemical properties of Mo and Se are similar to those of U in the reduction condition, but different from those of U in the oxidation condition. It is proposed that the ore-hosting layers can provide a curtain mount of uranium for uranium mineralization. 展开更多
关键词 sandstone-type uranium deposit interlayer oxidation zone geochemical subzone Shihongtan uranium deposit
下载PDF
Supergene Geochemistry of Gold and Oxidation Zone of the Sain Us Gold Deposit in the Inner Mongolian Arid Region
2
作者 Ma Mintao and Guan Guangyue Department of Chemistry and Environment Engineering,Beijing Polytechnic University, Beijing Geological Department, Northeast University of Technology, Shenyang,Liaoning Fei Zhenbi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1997年第1期58-68,共11页
The Sain Us gold deposit is a typical auriferous sulphide quartz vein deposit in the InnerMongolian arid steppe climatic region. The oxidation zone has been controlled by the arid cli-mate since the beginning of the H... The Sain Us gold deposit is a typical auriferous sulphide quartz vein deposit in the InnerMongolian arid steppe climatic region. The oxidation zone has been controlled by the arid cli-mate since the beginning of the Holocene. Gold supergene evolution is characterized by enlarge-ment of gold grains, complication of the gold form, raising of the gold grade and increase of thegold fineness; besides, gold and silver have two enrichment peaks at the same depth, which is insharp contrast to the unimodal enrichment of gold and silver and the occurrence of gold aboveand silver below in a humid climatic region. Sun pumping is the main cause for the bimodalenrichment of gold and silver. Illite 2 M_1 is one of the main causes for the upper enrichment peakof gold and silver. 展开更多
关键词 arid climate gold deposit oxidation zone gold supergene enrichment PALAEOCLIMATE sun pumping
下载PDF
Preliminary Study of the Characteristics and Genesis of Arsenate Minerals in the Oxidized Zone of the Debao Skarn-Type Cu-Sn Ore Deposit in Guangxi
3
作者 Li Yi Lai Lairen Institute of Geology and Mineral Resources,China National Nonferrous Metals Industry Corporation Zhang Zhongmin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1991年第2期187-194,共8页
Through the study of the oxidized zone of the Debao skarn-type Cu-Sn deposit in Guangxi, the authorshave found 14 arsenate minerals, most of which are for the first time reported in China. They are mainly Cuarsenate m... Through the study of the oxidized zone of the Debao skarn-type Cu-Sn deposit in Guangxi, the authorshave found 14 arsenate minerals, most of which are for the first time reported in China. They are mainly Cuarsenate minerals with subordinate Cu-Pb arsenate minerals and minor Fe-Pb-Ba varieties. Based on their paragenesis these minerals may be divided into the following series: (1) the clinoclasite-olivenite-cornwallite- cornubite- debaoite- copper silicarsenate association, (2) the scorodite- carminite- beudan-tite-bayldonite- duftite association, and (3) the scorodite-Ba-bearing pharmacosiderite- dussertite association. Arsenate minerals are formed generally in the oxidized zone of the sulfide-type deposits which lie in thewarm, humid and rainy torrid-subtropical zone with pH=6-8 and contain large amounts of arsenopyrite andcarbonate rocks. 展开更多
关键词 Preliminary Study of the Characteristics and Genesis of Arsenate Minerals in the Oxidized zone of the Debao Skarn-Type Cu-Sn Ore Deposit in Guangxi Cu Sn
下载PDF
Oxidation damage zone formed in creep fatigue crack growth of GH4169 alloy at 650℃
4
作者 Lan-zhou Liu Yi-fei Gao +1 位作者 Jin-hui Du Teng An 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第12期2582-2592,共11页
In the creep fatigue crack growth of GH4169 alloy,oxidation is a prominent damage source,which is mainly manifested as the oxidation damage zone in front of crack tip.In order to investigate the property of the oxidat... In the creep fatigue crack growth of GH4169 alloy,oxidation is a prominent damage source,which is mainly manifested as the oxidation damage zone in front of crack tip.In order to investigate the property of the oxidation damage zone formed in the creep fatigue crack growth,crack growth tests of directly aged GH4169 alloy were conducted at 650℃ in air under various load conditions.Interrupted tests were performed to observe the damage characteristics at crack tip.Block tests were systematically executed to quantify the dependency of oxidation damage zone size on load and holding time.The crack propagation of the GH4169 alloy has a close relationship with grain boundary oxidation at 650℃.An oxidation damage zone in front of crack tip includes intergranular microcracks and oxidised but uncracked grain boundaries.Its size has been calculated from transient crack growth rate and described as a function of maximum stress intensity factor and holding time.Based on oxidation damage zone size,a novel model has been developed to predict the creep fatigue crack growth rate of the GH4169 alloy at 650℃. 展开更多
关键词 Performance evaluation Creep fatigue crack growth-Directly aged GH4169 alloy Intergranular crack propagation oxidation damage zone
原文传递
Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake 被引量:7
5
作者 Huub J. M. Op den Camp 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第5期790-799,共10页
The spatial distribution and diversity of archaeal and bacterial ammonia oxidizers (AOA and AOB) were evaluated targeting amoA genes in the gradient of a littoral buffer zone which has been identified as a hot spot ... The spatial distribution and diversity of archaeal and bacterial ammonia oxidizers (AOA and AOB) were evaluated targeting amoA genes in the gradient of a littoral buffer zone which has been identified as a hot spot for N cycling. Here we found high spatial heterogeneity in the nitrification rate and abundance of ammonia oxidizers in the five sampling sites. The bacterial amoA gene was numerically dominant in most of the surface soil but decreased dramatically in deep layers. Higher nitrification potentials were detected in two sites near the land/water interface at 4.4–6.1 μg NO2-N/(g dry weight soil·hr), while only 1.0–1.7 μg NO2-N/(g dry weight soil·hr) was measured at other sites. The potential nitrification rates were proportional to the amoA gene abundance for AOB, but with no significant correlation with AOA. The NH4+ concentration was the most determinative parameter for the abundance of AOB and potential nitrification rates in this study. Higher richness in the surface layer was found in the analysis of biodiversity. Phylogenetic analysis revealed that most of the bacterial amoA sequences in surface soil were affiliated with the genus of Nitrosopira while the archaeal sequences were almost equally affiliated with Candidatus ‘Nitrososphaera gargensis’ and Candidatus ‘Nitrosocaldus yellowstonii’. The spatial distribution of AOA and AOB indicated that bacteria may play a more important role in nitrification in the littoral buffer zone of a N-rich lake. 展开更多
关键词 littoral zone ammonia oxidation archaea bacteria heterogeneity abundance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部