期刊文献+
共找到5,490篇文章
< 1 2 250 >
每页显示 20 50 100
Bimetallic In_(2)O_(3)/Bi_(2)O_(3) Catalysts Enable Highly Selective CO_(2) Electroreduction to Formate within Ultra-Broad Potential Windows 被引量:1
1
作者 Zhongxue Yang Hongzhi Wang +7 位作者 Xinze Bi Xiaojie Tan Yuezhu Zhao Wenhang Wang Yecheng Zou Huai ping Wang Hui Ning Mingbo Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期257-264,共8页
CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet... CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR. 展开更多
关键词 bimetallic catalyst CO_(2)electrochemical reduction reaction FORMATE oxygen vacancy wide potential window
下载PDF
Correlations between silt density index,turbidity and oxidation-reduction potential parameters in seawater reverse osmosis desalination
2
作者 Seyed Mohammad Hossein Fayaz Roya Mafigholami +1 位作者 Fatemeh Razavian Karim Ghasemipanah 《Water Science and Engineering》 EI CAS CSCD 2019年第2期115-120,共6页
The reverse osmosis method is one of the most widely used methods of seawater desalination at present.Hydrophilic and desalting membranes in reverse osmosis systems are highly susceptible to the input pollutants.Vario... The reverse osmosis method is one of the most widely used methods of seawater desalination at present.Hydrophilic and desalting membranes in reverse osmosis systems are highly susceptible to the input pollutants.Various contaminants,including suspended organic and inorganic matter,result in membrane fouling and membrane degradation.Fundamental parameters such as the turbidity,the amount of chlorine injection,and silt density index (SDI) are the most predominant parameters of fouling control in the membranes.In this study,the operation system included a water intake unit,a pretreatment system,and an RO system.The pretreatment system encompassed a clarifier,a gravity sand filter,pressurized sand filters,and a cartridge filter.The correlation between the amount of chlorine injection in terms of the oxidation-reduction potential (ORP) and the SDI value of the input water was investigated at a specified site next to the Persian Gulf.The results showed that,at certain intervals of inlet turbidity,injection of a certain amount of chlorine into the raw water has a distinct effect on the decrease of SDI. 展开更多
关键词 SILT density index oxidation-reduction potential TURBIDITY REVERSE osmosis Membrane FOULING
下载PDF
Oxidation Evolution and Activity Origin of N-Doped Carbon in the Oxygen Reduction Reaction
3
作者 Jiaqi Wu Chuanqi Cheng +2 位作者 Shanshan Lu Bin Zhang Yanmei Shi 《Transactions of Tianjin University》 EI CAS 2024年第4期369-379,共11页
N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher ... N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher than the theoretical oxida-tion potential of carbon,possibly leading to the oxidation of carbon materials.Consequently,the infl uence of the structural oxidation evolution on ORR performance and the real active sites are not clear.In this study,we discover a two-step oxida-tion process of N-doped carbon during the ORR.The fi rst oxidation process is caused by the applied potential and bubbling oxygen during the ORR,leading to the oxidative dissolution of N and the formation of abundant oxygen-containing functional groups.This oxidation process also converts the reaction path from the four-electron(4e)ORR to the two-electron(2e)ORR.Subsequently,the enhanced 2e ORR generates oxidative H_(2)O_(2),which initiates the second stage of oxidation to some newly formed oxygen-containing functional groups,such as quinones to dicarboxyls,further diversifying the oxygen-containing functional groups and making carboxyl groups as the dominant species.We also reveal the synergistic eff ect of multiple oxygen-containing functional groups by providing additional opportunities to access active sites with optimized adsorption of OOH*,thus leading to high effi ciency and durability in electrocatalytic H_(2)O_(2) production. 展开更多
关键词 Oxygen reduction reaction N-doped carbon Reaction path Structural evolution oxidation in reduction
下载PDF
Potential-dependent insights into the origin of high ammonia yield rate on copper surface via nitrate reduction:A computational and experimental study
4
作者 Yangge Guo Nannan Sun +5 位作者 Liuxuan Luo Xiaojing Cheng Xueying Chen Xiaohui Yan Shuiyun Shen Junliang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期272-281,共10页
Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum s... Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials. 展开更多
关键词 Nitrate reduction to ammonia Copper surface Density functional theory Constant electrode potential method Experimental validation
下载PDF
Effects of mechanical activation and oxidation-reduction on hydrochloric acid leaching of Panxi ilmenite concentration 被引量:6
5
作者 谭平 胡慧萍 张黎 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1414-1421,共8页
The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction ... The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction treatment and mechanical activation significantly accelerate the extraction of Fe,Ca and Mg from Panxi ilmenite concentration;however,the CaO and MgO contents of the calcined residues obtained from oxidized-reduced ilmenite concentration are higher than the standard values required by chlorination process.The Ca and Mg in oxidized-reduced ilmenite concentration can be leached much faster after mechanical activation,yielding a synthetic rutile which meets the requirements of chlorination process containing 90.50% TiO2 and 1.37% total iron as well as combined CaO and MgO of 1.00%.The optimum oxidation and reduction conditions are as follows:oxidization at 900 ℃ in the presence of oxygen for 15 min and reduction at 750 ℃ by hydrogen for 30 min. 展开更多
关键词 ilmenite concentration mechanical activation oxidation reduction hydrochloric acid leaching
下载PDF
Hydrothermal synthesis of titanium-supported nanoporous palladium-copper electrocatalysts for formic acid oxidation and oxygen reduction reaction
6
作者 易清风 肖兴中 刘云清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1184-1190,共7页
Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. ... Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. Their electrocatalytic activity for formic acid oxidation and oxygen reduction reaction (ORR) in alkaline media was examined by voltammetric techniques. Among the as-prepared catalysts, nanoPdslCu19/Ti catalyst presents the highest current density of 39.8 mA/cm2 at -0.5 V or 66.4 mA/cm2 at -0.3 V for formic acid oxidation. The onset potential of ORR on the nanoPdslCU19/Ti catalyst presents an about 70 mV positive shift compared to that on the nanoPd/Ti, and the current density of ORR at -0.3 V is 2.12 mA/cm2, which is 3.7 times larger than that on the nanoPd/Ti. 展开更多
关键词 Pd electrode Pd-Cu electrode formic acid oxidation oxygen reduction reaction NANOPARTICLE ELECTROCATALYSIS
下载PDF
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:1
7
作者 Ziqi Zhang Jinyun Xu +9 位作者 Yu Zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION Porous metal oxides ELECTROCATALYSIS
下载PDF
Plasma potential measurements using an emissive probe made of oxide cathode
8
作者 李建泉 马海杰 陆文琪 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期571-577,共7页
A novel emissive probe consisting of an oxide cathode coating is developed to achieve a low operating temperature and long service life.The properties of the novel emissive probe are investigated in detail,in comparis... A novel emissive probe consisting of an oxide cathode coating is developed to achieve a low operating temperature and long service life.The properties of the novel emissive probe are investigated in detail,in comparison with a traditional tungsten emissive probe,including the operating temperature,the electron emission capability and the plasma potential measurement.Studies of the operating temperature and electron emission capability show that the tungsten emissive probe usually works at a temperature of 1800 K-2200 K while the oxide cathode emissive probe can function at about 1200 K-1400 K.In addition,plasma potential measurements using the oxide cathode emissive probe with different techniques have been accomplished in microwave electron cyclotron resonance plasmas with different discharge powers.It is found that a reliable plasma potential can be obtained using the improved inflection point method and the hot probe with zero emission limit method,while the floating point method is invalid for the oxide cathode emissive probe. 展开更多
关键词 emissive probe oxide cathode plasma potential filament temperature
下载PDF
Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides
9
作者 Xiaofeng Zhu Bingbing Xiao +3 位作者 Jiaxin Su Shuai Wang Qingran Zhang Jun Wang 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第12期5-6,共2页
Electrochemical oxygen reduction reaction via the two-electron pathway(2e-ORR)is becoming a promising and sustainable approach to producing hydrogen peroxide(H_(2)O2)without significant carbon footprints.To achieve be... Electrochemical oxygen reduction reaction via the two-electron pathway(2e-ORR)is becoming a promising and sustainable approach to producing hydrogen peroxide(H_(2)O2)without significant carbon footprints.To achieve better performance,most of the recent progress and investigations have focused on developing novel carbon-based electrocatalysts.Nevertheless,the sophisticated preparations,decreased selectivity and undefined active sites of carbon-based catalysts have been generally acknowledged and criticized.To this end,transition metal oxides and chalcogenides have increasingly emerged for 2e-ORR,due to their catalytic stability and tunable microstructure.Here,the development of metal oxides and chalcogenides for O2-to-H_(2)O2 conversion is prospectively reviewed.By summarizing previous theoretical and experimental efforts,their diversity and outstanding catalytic activity are firstly provided.Meanwhile,the topological and chemical factors influencing 2e-ORR selectivity of the metal oxides/chalcogenides are systematically elucidated,including morphology,phase structures,doping and defects engineering.Thus,emphasizing the influence on the binding of ORR intermediates,the active sites and the underlying mechanism is highlighted.Finally,future opportunities and challenges in designing metal oxides/chalcogenides-based catalysts for H_(2)O2 electro-synthesis are outlined.The present review provides insights and fundamentals of metal oxides/chalcogenides as 2e-ORR catalysts,promoting their practical application in the energy-related industry. 展开更多
关键词 oxidES CHALCOGENIDES Oxygen reduction reaction H2O2 electro-synthesis Active sites
下载PDF
Electrochemical reduction of carbon dioxide to produce formic acid coupled with oxidative conversion of biomass
10
作者 Xi Liu Yifan Wang +2 位作者 Zhiwei Dai Daihong Gao Xuebing Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期705-729,共25页
Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(... Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products. 展开更多
关键词 Electrochemical reduction of CO_(2) Formic acid oxidative conversion of biomass LIGNOCELLULOSE Coupled system
下载PDF
Substituent Effects on Reduction Potentials of Meta-substituted and Para-substituted Benzylideneanilines 被引量:1
11
作者 王琳艳 曹朝暾 曹晨忠 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第2期260-264,I0002,共6页
Effects of meta-substituent of 3,4'/4,3'/3,3'-substituted benzylideneanilines (XBAYs) on the electrochemical reduction potentials (E(Red)) were investigated, in which 49 samples of target compounds were synth... Effects of meta-substituent of 3,4'/4,3'/3,3'-substituted benzylideneanilines (XBAYs) on the electrochemical reduction potentials (E(Red)) were investigated, in which 49 samples of target compounds were synthesized, and their reduction potentials were measured by cyclic voltammetry. The substituent effects on the E(Red) of target compounds were analyzed and an optimality equation with four parameters (Hammett constant a of X, Hammett constant a of Y, excited-state substituent constant σexCC of X, and the substituent specific cross-interaction effect △σexCC2 between X and Y) was obtained. The results show that the factors affecting the E(Red) of 3,4'/4,31/3,3P-substituted XBAYs are different from those of 4,4'-substituted XBAYs. For 3,4'/4,3'/3,3'-substituted XBAYs, σ(X) and σ(Y) must be employed, and the contribution of △σexCC2 is important and not negligible. Compared with 4,4'-substituted XBAYs, X group contributes less to 3,4'/4,3'/3,3'-substituted XBAYs, while Y group contributes more to them. Additionally, it was observed that either para-substituted XBAYs or meta-substituted XBAYs, the substituent effects of X are larger than those of Y on the E(Red) of substituted XBAYs. 展开更多
关键词 3 4r/4 3'/3 3'-substituted benzylideneanilines Substituent effects Electro-chemical reduction potentials Cyclic voltammetry Excited-state substituent constant
下载PDF
Effect of Cr2O3 addition on oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets with simulated coke oven gas 被引量:10
12
作者 Wei-dong Tang Song-tao Yang Xiang-xin Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第8期963-972,共10页
The oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets(CVTP)with Cr2O3 addition were studied,and the reduction swelling index(RSI)and compressive strength(CS)of t... The oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets(CVTP)with Cr2O3 addition were studied,and the reduction swelling index(RSI)and compressive strength(CS)of the reduced CVTP with simulated coke oven gas(COG)injection were investigated.The results showed that the CS of the CVTP decreases and the porosity of the CVTP increases with increasing amount of Cr2O3 added.The Cr2O3 mainly exists in the form of(Cr,Fe)2O3 solid solution in the CVTP and as Fe-Cr in the reduced CVTP.The CS of the reduced CVTP increases and the RSI of the reduced CVTP decreases with increasing amount of Cr2O3 added.The limited aggregation and diffusion of metallic iron contribute to the formation of dense lamellar crystals,which leads to the slight decrease for reduction swelling behavior of reduced CVTP.This work provides a theoretical and technical basis for the utilization of CVTP and other Cr-bearing ores such as chromite with COG recycling technology. 展开更多
关键词 CHROMIUM oxide oxidation INDURATION reduction swellability coke oven gas chromium-bearing VANADIUM TITANOMAGNETITE PELLETS
下载PDF
Oxidation leaching of copper smelting dust by controlling potential 被引量:24
13
作者 Wei-feng LIU Xin-xin FU +2 位作者 Tian-zu YANG Du-chao ZHANG Lin CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第9期1854-1861,共8页
A study was conducted for metal extraction from copper smelting dust using the oxidation leaching and control of potential technology.The effects of H2O2 dosage,H2O2 feeding speed,initial HCl concentration,leaching te... A study was conducted for metal extraction from copper smelting dust using the oxidation leaching and control of potential technology.The effects of H2O2 dosage,H2O2 feeding speed,initial HCl concentration,leaching temperature,liquid-to-solid ratio and leaching time on metals leaching efficiencies were investigated.The following optimized leaching conditions were obtained:H2O2 dosage of 0.8 mL/g(redox potential of 429 mV),H2O2 feeding speed of 1.0 mL/min,initial H2SO4 concentration of 1.0 mol/L,initial HCl concentration of 1.0 mol/L,leaching temperature of 80°C,initial liquid-to-solid ratio of 5:1 mL/g and leaching time of 1.5 h.Under the optimized conditions,copper and arsenic can be effectively leached from copper smelting dust,leaving residue as a suitable lead resource.The average leaching efficiencies of copper,arsenic and iron are 95.27%,96.82%and 46.65%,respectively. 展开更多
关键词 COPPER smelting dust oxidation leaching potential
下载PDF
Rough-surfaced bimetallic copper–palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction 被引量:4
14
作者 Dong Chen Linlin Xu +1 位作者 Hui Liu Jun Yang 《Green Energy & Environment》 SCIE CSCD 2019年第3期254-263,共10页
Engineering the morphology of nanomaterials and modifying their electronic structure are effective ways to improve their performance in electrocatalysis. Through combining the co-reduction of Pd2+ and Cu2+ precursors ... Engineering the morphology of nanomaterials and modifying their electronic structure are effective ways to improve their performance in electrocatalysis. Through combining the co-reduction of Pd2+ and Cu2+ precursors with a digestive ripening process in oleylamine, we report the synthesis of copper-palladium(Cu-Pd) alloy multicubes with rough surfaces. Benefiting from their alloy and unique rough-surfaced structure,which provides ample edge/corner and step atoms as well as the electronic coupling between Cu and Pd leading to the lower of d-band center, the rough-surfaced Cu-Pd alloy multicubes show much better electrocatalytic performance not only for formic acid oxidation but also for oxygen reduction in comparison with those of spherical Cu-Pd alloy nanoparticles and commercial Pd/C catalyst. In contrast, we confirm that the rough-surfaced Cu-Pd alloy multicubes only exhibit very low Faradaic efficiency(34.3%) for electrocatalytic conversion of carbon dioxide(CO2) to carbon monoxide(CO) due to the presence of strong competing hydrogen evolution reaction, which results in their very poor selectivity for the reduction of CO2 to CO. The findings in this study not only offer a promising strategy to produce highly effective electrocatalysts for direct formic acid fuel cells, but also enlighten the ideas to design efficient electrocatalysts for CO2 reduction. 展开更多
关键词 Copper–palladium Multicube Formic acid oxidation Oxygen reduction CO2 reduction
下载PDF
Reduced graphene oxide supported PdNi alloy nanocrystals for the oxygen reduction and methanol oxidation reactions 被引量:2
15
作者 Hui-Min Liu Shu-He Han +2 位作者 Ying-Ying Zhu Pei Chen Yu Chen 《Green Energy & Environment》 SCIE 2018年第4期375-383,共9页
The research on electrocatalysts with relatively lower price than Pt and excellent electrocatalytic performance for the cathode oxygen reduction reaction(ORR) and anode methanol oxidation reaction(MOR) is vital for th... The research on electrocatalysts with relatively lower price than Pt and excellent electrocatalytic performance for the cathode oxygen reduction reaction(ORR) and anode methanol oxidation reaction(MOR) is vital for the development of direct methanol fuel cells(DMFCs). In this work, we develop a cyanogel-reduction method to synthesize reduced graphene oxide(rGO) supported highly dispersed PdNi alloy nanocrystals(PdNi/rGO) with high alloying degree and tunable Pd/Ni ratio. The large specific surface area and the d-band center downshift of Pd result in excellent activity of Pd4 Ni1/rGO nanohybrids for the ORR. The modification of Pd electronic structure can facilitate the adsorption of CH3 OH on Pd surface and the highly oxophilic property of Ni can eliminate/mitigate the COadsintermediates poisoning, which make PdNi/r GO nanohybrids possess superior MOR activity. In addition, rGO improve the stability of PdNi alloy nanocrystals for the ORR and MOR. Due to high activity and stability for the ORR and MOR, PdNi/rGO nanohybrids are promising to be an available bifunctional electrocatalyst in DMFCs. 展开更多
关键词 Cyanogel reduction Reduced graphene oxidE PdNi alloy NANOCRYSTALS Oxygen reduction REACTION METHANOL oxidation REACTION
下载PDF
Analysis of transportation carbon emissions and its potential for reduction in China 被引量:2
16
作者 Jinxue Ding Fengjun Jin +1 位作者 Yuejiao Li Jiao'e Wang 《Chinese Journal of Population,Resources and Environment》 2013年第1期17-25,共9页
The transportation industry is an essential sector for carbon emissions mitigation.This paper firstly used the LMDI(Logarithmic Mean Divisia Index)decomposition method to establish factors decomposition model on China... The transportation industry is an essential sector for carbon emissions mitigation.This paper firstly used the LMDI(Logarithmic Mean Divisia Index)decomposition method to establish factors decomposition model on China's transportation carbon emission.Then,a quantitative analysis was performed to study the factors influencing China's transportation carbon emissions from 1991 to 2008,which are identified as transportation energy efficiency,transportation structure and transportation development.The results showed that:(1)The impact of transportation development on transportation carbon emissions showed pulling function.Its contribution value to carbon emissions remained at high growth since 1991 and showed an exponential growth trend.(2)The impact of transportation structure on transportation carbon emissions showed promoting function in general,but its role in promoting carbon emissions decreased year by year.And with the continuous optimization of transportation structure,the promoting effect decreased gradually and showed the inversed"U"trend.(3)The impact of transportation energy efficiency on transportation carbon emissions showed a function of inhibition before pulling.In order to predict the potential of carbon emission reduction,three scenarios were set.Analysis of the scenarios showed that if greater intensity emission reduction measures are taken,the carbon emissions will reduce by 31.01 million tons by 2015 and by 48.81 million tons by 2020. 展开更多
关键词 TRANSPORTATION carbon EMISSIONS emission reduction potential factor DECOMPOSITION
下载PDF
CH_4 emissions and reduction potential in wastewater treatment in China 被引量:5
17
作者 MA Zhan-Yun FENG Peng +3 位作者 GAO Qing-Xian LU Yan-Na LIU Jun-Rong LI Wen-Tao 《Advances in Climate Change Research》 SCIE CSCD 2015年第3期216-224,共9页
The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the ... The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the characteristics of CH_4 emissions from wastewater treatment in China were analyzed. The driving factors of CH_4 emissions were studied, and the emission trend and reduction potential were predicted and analyzed according to the current situation. Results show that in 2010, CH_4 emissions from the treatment of domestic and industrial wastewater were0.6110 Mt and 1.6237 Mt, respectively. Eight major industries account for more than 92% of emissions, and CH_4 emissions gradually increased from 2005 to 2010. From the controlling management scenario, we predict that in 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will be 1.0136 Mt and 2.3393 Mt, respectively, and the reduction potential will be 0.0763 Mt and 0.2599 Mt, respectively.From 2010 to 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will increase by 66% and 44%, respectively. 展开更多
关键词 Domestic and industrial wastewater CH4 emissions reduction scenario Emission reduction potential
下载PDF
A method based on potential theory for calculating air ca formation of an air cavity resistance reduction ship 被引量:8
18
作者 李云波 吴晓宇 +1 位作者 马勇 王金光 《Journal of Marine Science and Application》 2008年第2期98-101,共4页
This research is intended to provide academic reference and design guidance for further studies to determine the most effective means to reduce a ship’s resistance through an air-cavity. On the basis of potential the... This research is intended to provide academic reference and design guidance for further studies to determine the most effective means to reduce a ship’s resistance through an air-cavity. On the basis of potential theory and on the assumption of an ideal and irrotational fluid, this paper drives a method for calculating air cavity formation using slender ship theory then points out the parameters directly related to the formation of air cavities and their interrelationships. Simulations showed that the formation of an air cavity is affected by cavitation number, velocity, groove geometry and groove size. When the ship’s velocity and groove structure are given, the cavitation number must be within range to form a steady air cavity. The interface between air and water forms a wave shape and could be adjusted by an air injection system. 展开更多
关键词 air cavity resistance reduction forming of air cavity potential theory cavitation number
下载PDF
Single-atom catalysts for CO oxidation,CO_(2) reduction,and O_(2) electrochemistry 被引量:4
19
作者 Wenyu Yuan Yiyuan Ma +1 位作者 Heng Wu Laifei Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期254-279,共26页
CO_(x)(x=1,2)and O_(2) chemistry play key roles in tackling global severe environmental challenges and energy issues.To date,the efficient selective electrocatalytic transformations of COx-carbon chemicals,and O_(2)-h... CO_(x)(x=1,2)and O_(2) chemistry play key roles in tackling global severe environmental challenges and energy issues.To date,the efficient selective electrocatalytic transformations of COx-carbon chemicals,and O_(2)-hydrogenated products are still huge challenges.Single-atom catalysts(SACs)as atomic-scale novel catalysts in which only isolated metal atoms are dispersed on supports shed new insights in overcome these obstacles in CO_(x) and O_(2) chemistry,including CO oxidation,CO_(2) reduction reaction(CO_(2)RR),oxygen reduction reaction(ORR),and oxygen evolution reaction(OER).In this review,the unique features and advanced synthesis strategies of SACs from a viewpoint of fundamental synthesis design are first highlighted to guide future strategy design for controllable SAC synthesis.Then,the to-date reported CO_(2)RR,CO oxidation,OER,and ORR mechanism are included and summarized.More importantly,the design principles and design strategies of improving the intrinsic activity,selectivity,and stability are extensively discussed and the engineering strategy is classified as neighbor coordination engineering,metal-atom engineering,and substrate engineering.Via the comprehensive review and summary of state-of-the-art SACs,the synthesis–structure–property–mechanism–design principle relation can be revealed to shed lights into the structural construction of SACs.Finally,we present an outlook on current challenges and future directions for SACs in CO_(x) and O_(2) chemistry. 展开更多
关键词 Single-atom catalysts CO_(2)reduction reaction CO oxidation Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Acetic acid-assisted mild dealloying of fine CuPd nanoalloys achieving compressive strain toward high-efficiency oxygen reduction and ethanol oxidation electrocatalysis 被引量:5
20
作者 Danye Liu Yu Zhang +5 位作者 Hui Liu Peng Rao Lin Xu Dong Chen Xinlong Tian Jun Yang 《Carbon Energy》 SCIE CSCD 2023年第7期112-120,共9页
Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Here... Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Herein,to address the deficiencies associated with the commonly used dealloying methods,for example,electrochemical and sulfuric acid/nitric acid treatment,we report an acetic acid-assisted mild strategy to dealloy Cu atoms from the outer surface layers of CuPd alloy nanoparticles to achieve high-efficiency electrocatalysis for oxygen reduction and ethanol oxidation in an alkaline electrolyte.The leaching of Cu atoms by acetic acid exerts an additional compressive strain effect on the surface layers and exposes more active Pd atoms,which is beneficial for boosting the catalytic performance of a dealloyed catalyst for the oxygen reduction reaction(ORR)and the ethanol oxidation reaction(EOR).In particular,for ORR,the CuPd nanoparticles with a Pd/Cu molar ratio of 2:1 after acetic dealloying show a half-wave potential of 0.912 V(vs.RHE)and a mass activity of 0.213 AmgPd^(-1) at 0.9 V,respectively,while for EOR,the same dealloyed sample has a mass activity and a specific activity of 8.4 Amg^(-1) and 8.23 mA cm^(-2),respectively,much better than their dealloyed counterparts at other temperatures and commercial Pd/C as well as a Pt/C catalyst. 展开更多
关键词 compressive strain effect DEALLOYING ELECTROCATALYSIS ethanol oxidation reaction oxygen reduction reaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部