A novel composites hydrogel adsorbent was facilely synthesized for efficient removal of acid dyes from aqueous solution.The composite hydrogel consisting of TiO_2 nanotubes(TN) and graphene oxide(GO)(H-TN-GO) was char...A novel composites hydrogel adsorbent was facilely synthesized for efficient removal of acid dyes from aqueous solution.The composite hydrogel consisting of TiO_2 nanotubes(TN) and graphene oxide(GO)(H-TN-GO) was characterized by BrunauerEmmett-Teller(BET),transmission electron microscope(TEM),scanning electron microscope(SEM),Raman spectra and X-ray photoelectron spectroscope(XPS).Experimental results elucidated that columnar hydrogel could be tunably prepared with self-assembly by adjusting the proportion of GO/TN,mixing time and pH.The properties of adsorption and regeneration on methyl orange(MO)onto H-TN-GO were investigated respectively.The maximal adsorption capacity of H-TN-GO for MO reached 933.8 and 513.7mg/g under the pH of 4.0 and 6.8,respectively.The adsorption capacity of MO reached the maximum when pH was equivalent to4.0,which attributed to increasing electrostatic attraction.Besides,the adsorption behavior was fitted reasonably better with Freundlich isotherm model than Langmuir model;the adsorption speed was rapid and the removal ratio almost reached 99.5% when the concentration of MO was less than 100 mg/L.After the used adsorbent was irradiated with the ultraviolet ray of 500 W for 3 h,its adsorption capacity could be recovered without significant loss.展开更多
Kinetics of oxygen adsorption on single crystal Mn<sub>5</sub>Si<sub>3</sub> (111) surface and initial surface oxidation were investigated. Oxygen chemisorbs dissociatively at room temperatur...Kinetics of oxygen adsorption on single crystal Mn<sub>5</sub>Si<sub>3</sub> (111) surface and initial surface oxidation were investigated. Oxygen chemisorbs dissociatively at room temperature on Mn and Si atoms. A fast oxidation of Si atoms occurs followed by oxidation of Mn atoms at RT. The MnO<sub>2</sub> was reduced by Si atoms and the SiO was oxidized further to SiO<sub>2</sub> during the sample heating.展开更多
It is indicative of the TSR result that CH4 was strongly adsorbed on well degassed SrCO3 surface at high temperatUre.A desorption peak of CH4 was found in CH4TPD profile which appeared at ca. 310℃.The strong adsorpti...It is indicative of the TSR result that CH4 was strongly adsorbed on well degassed SrCO3 surface at high temperatUre.A desorption peak of CH4 was found in CH4TPD profile which appeared at ca. 310℃.The strong adsorption of CH4 over the surface of SrCO3 was attributed to the strong basicity of SrO sites resulted from decomposition of SrCO_3展开更多
-The i. r. spectra of Na4 [UO2 (CO3)3], Na [UO2 (OH)3] and the surface species of uranium on HTO underthe condition of flowing natural seawater and concentrated seawater (NaCl-NaHCO3-U) were recorded, with the bands o...-The i. r. spectra of Na4 [UO2 (CO3)3], Na [UO2 (OH)3] and the surface species of uranium on HTO underthe condition of flowing natural seawater and concentrated seawater (NaCl-NaHCO3-U) were recorded, with the bands of urany! of surface species obtained and the finding that iigands of surface species besides HTO are mainly water and OH, and there are some CO32- groups under the condition of natural seawater. Some relations between the complex properties and the j. r. spectroscopic characters for uranyl complexes were studied, and the transferred change quantity of surface complex was calculated.Structure models for surface species of adsorption are herein presented and the mechanism for uranium adsorption is deduced.展开更多
The effect of mixed oxide support on the performance of Ni/ZnO in the reactive adsorption desulfurization(RADS) reaction was investigated in a fixed bed reactor by using thiophene as the sulfur-containing compound in ...The effect of mixed oxide support on the performance of Ni/ZnO in the reactive adsorption desulfurization(RADS) reaction was investigated in a fixed bed reactor by using thiophene as the sulfur-containing compound in the model gasoline. A series of oxide supports for Ni/ZnO were synthesized by the co-precipitation method and characterized by XRD, N_2-adsorption, TPR and NH_3-TPD techniques. It was found that the desulfurization capacity of Ni/ZnO was enhanced greatly when active components were supported on the proper mixed oxide. Ni/ZnO supported on oxides exhibited much higher desulfurization efficiency and sulfur adsorption capacity than the unsupported Ni/ZnO and the synthesized Ni/ZnO-SA adsorbent exhibited the highest efficiency for thiophene removal. The higher desulfurization activity and sulfur capacity of Ni/ZnO supported on SiO_2-Al_2O_3 with small particle size, high specific surface area and large pore volume could promote the high dispersion of active metal phase and the transfer of sulfur to ZnO with lower mass transfer resistance. γ-Al_2O_3 species could weaken the interaction of active phases and SiO_2 as well as could increase greatly the amount of weak acids. Therefore, these oxides could impose a great influence on the structure and chemical properties of the catalyst.展开更多
Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and ...Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.展开更多
A simple ultrasound-assisted co-precipitation method was developed to prepare ferroferric oxide/graphene oxide magnetic nanoparticles(Fe_3O_4/CO MNPs).The hysteresis loop of Fe_3O_4/GO MNPs demonstrated that the sampl...A simple ultrasound-assisted co-precipitation method was developed to prepare ferroferric oxide/graphene oxide magnetic nanoparticles(Fe_3O_4/CO MNPs).The hysteresis loop of Fe_3O_4/GO MNPs demonstrated that the sample was typical of superparamagnetic material.The samples were characterized by transmission electron microscope,and it is found that the particles are of small size.The Fe_3O_4/GO MNPs were further used as an adsorbent to remove Rhodamine B.The effects of initial pH of the solution,the dosage of adsorbent,temperature,contact time and the presence of interfering dyes on adsorption performance were investigated as well.The adsorption equilibrium and kinetics data were fitted well with the Freundlich isotherm and the pseudosecond-order kinetic model respectively.The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption of Rhodamine B.And the adsorption process was endothermic in nature.Furthermore,the magnetic composite with a high adsorption capacity of Rhodamine B could be effectively and simply separated using an external magnetic field.And the used particles could be regenerated and recycled easily.The magnetic composite could find potential applications for the removal of dye pollutants.展开更多
Carbon-supported Pd nanoparticles were prepared by microwave heating-glycol reduction method, and characterized by a wide array of experimental techniques including X-ray diffraction spectroscopy(XRD) and transmissi...Carbon-supported Pd nanoparticles were prepared by microwave heating-glycol reduction method, and characterized by a wide array of experimental techniques including X-ray diffraction spectroscopy(XRD) and transmission electron microscopy(TEM). The electrooxidation behaviors of ethanol on the Pd/C electrode in alkaline media were investigated using cyclic voltammetry(CV), chronoamperometry(CA), electrochemical impedance spectroscopy(EIS) and single cell performance methods. Pd/C electrode for ethanol oxidation showed high electro-catalytic activity and long term stability. However, it is observed that the current density decreases with the increasing of the potential and negative impedance presents in the potential from-0.1 to0.1 V. The decreasing current density and the negative impedance could be due to the adsorbed intermediates species that inhibited the further oxidation of ethanol. Based on the chemical reaction analysis and EIS spectra, equivalent circuits relating to various potential zones have been obtained. These results reveal the dynamic adsorption of intermediates species on Pd surfaces. Significantly, it is clarified that the adsorption behavior begins from the maximum catalysis of electro-catalysis and ends in the formation of the palladium(II) oxide layer on the electrode surface.展开更多
This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface ...This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface methodology technique was used to optimize the process conditions and they were found to be: 500 mg/L for H2S initial concentration, 540 min for contact time and 1 g for adsorbent mass. The impacts of three arrangement factors(calcination temperature of impregnated activated carbon(IAC), the calcium solution concentration and contact time of calcination) on the H2S removal efficiency and impregnated AC yield were investigated. Both responses IAC yield(IACY, %) and removal efficiency(RE, %) were maximized to optimize the IAC preparation conditions. The optimum preparation conditions for IACY and RE were found as follows: calcination temperature of IAC of 880 ℃, calcium solution concentration of 49.3% and calcination contact time of 57.6 min, which resulted in 35.8% of IACY and 98.2% RE. In addition, the equilibrium and kinetics of the process were investigated. The adsorbent was characterized using TGA, XRD, FTIR, SEM/EDX, and BET. The maximum monolayer adsorption capacity was found to be 543.47 mg/g. The results recommended that the composite of PKSAC and Ca O could be a useful material for H2S containing wastewater treatment.展开更多
Antimony(Sb), which can be toxic at relatively low concentrations, may co-exist with Mn(Ⅱ)and/or Fe(Ⅱ) in some groundwater and surface water bodies. Here we investigated the potential oxidation and adsorption ...Antimony(Sb), which can be toxic at relatively low concentrations, may co-exist with Mn(Ⅱ)and/or Fe(Ⅱ) in some groundwater and surface water bodies. Here we investigated the potential oxidation and adsorption pathways of Sb(Ⅲ and V) species in the presence of Mn(Ⅱ) and Mn-oxidizing bacteria, with or without Fe(Ⅱ). Batch experiments were conducted to determine the oxidation and adsorption characteristics of Sb species in the presence of biogenic Mn oxides(BMOs), which were formed in-situ via the oxidation of Mn(Ⅱ) by a Mn-oxidizing bacterium(Pseudomonas sp. QJX-1). Results indicated that Sb(Ⅲ) ions could be oxidized to Sb(V) ions by BMO, but only Sb(V) originating from Sb(Ⅲ) oxidation was adsorbed effectively by BMO. Introduced Fe(Ⅱ) was chemically oxidized to Fe OOH, the precipitates of which mixed with BMO to form a new compound, biogenic Fe–Mn oxides(BFMO). The BMO part of the BFMO mainly oxidized and the Fe OOH of the BFMO mainly adsorbed the Sb species. In aquatic solutions containing both As(Ⅲ) and Sb(Ⅲ), the BFMO that formed in-situ preferentially oxidized Sb over As but adsorbed As more efficiently. Chemical analysis and reverse transcription real-time polymerase chain reaction revealed that the presence of Fe(Ⅱ), As(Ⅲ) and Sb(Ⅲ) accelerated the oxidation of Mn(Ⅱ) but inhibited the activity of Mn-oxidizing bacteria. These results provide significant insights into the biogeochemical pathways of Sb, Mn(Ⅱ) in aquatic ecosystems, with or without Fe(Ⅱ).展开更多
Graphene oxide(GO) holds great promise for a broad array of applications in many fields,but also poses serious potential risks to human health and the environment.In this study,the adsorptive properties of GO toward...Graphene oxide(GO) holds great promise for a broad array of applications in many fields,but also poses serious potential risks to human health and the environment.In this study,the adsorptive properties of GO toward Ca^(2+) and Na+were investigated using batch adsorption experiments,zeta potential measurements,and spectroscopic analysis.When pH increased from 4 to 9,Ca^(2+)adsorption by GO and the zeta potential of GO increased significantly.Raman spectra suggest that Ca^(2+)was strongly adsorbed on the GO via –COO Ca~+ formation.On the other hand,Na+was adsorbed into the electrical diffuse layer as an inert counterion to increase the diffuse layer zeta potential.While the GO suspension became unstable with increasing pH from 4 to 10 in the presence of Ca^(2+),it was more stable at higher pH in the NaC l solution.The findings of this research provide insights in the adsorption of Ca^(2+)on GO and fundamental basis for prediction of its effect on the colloidal stability of GO in the environment.展开更多
Advanced oxidation processes(AOPs) have been applied to address multiple environmental concerns including antibiotic resistance genes(ARGs). ARGs have shown an increasing threat to human health,and they are either har...Advanced oxidation processes(AOPs) have been applied to address multiple environmental concerns including antibiotic resistance genes(ARGs). ARGs have shown an increasing threat to human health,and they are either harbored by antibiotic-resistant bacteria(ARB) or free in the environment.However, the control of ARGs has been substantially limited by their low concentration and the limited knowledge about their interfacial behavior. Herein, a novel AOP catalyst, Ag/TiO_(2)/graphene oxide(GO),combined with a polyvinylidene fluoride(PVDF) ultrafiltration membrane was designed with a synergistic interfacial adsorption and oxidation function to inactivate ARGs with high efficiency in both model solutions and in secondary wastewater effluent, especially when the residue concentration was low.Further analysis showed that the mineralization of bases and phosphodiesters mainly caused the inactivation of ARGs. Moreover, the interfacial adsorption and oxidation processes of ARGs were studied at the molecular level. The results showed that GO was rich in sp^(2) backbones and functional oxygen groups,which efficiently captured and enriched the ARGs via p-p interactions and hydrogen bonds. Therefore,the photogenerated active oxygen species attack the ARGs by partially overcoming the kinetic problems in this process. The Ag/Ti O2/GO catalyst was further combined with a PVDF membrane to test its potential in wastewater treatment applications. This work offers an efficient method and a corresponding material for the inactivation and mineralization of intra/extracellular ARGs. Moreover, the molecularlevel understanding of ARG behaviors on a solid–liquid interface will inspire further control strategies of ARGs in the future.展开更多
The adsorption of hydrogen on zinc oxide has been a very interesting topic. A. L.Dent and R. J. Kokes studied the kinetics and mechanism by IR, H<sub>2</sub>-D<sub>2</sub> exchange and BETmeasu...The adsorption of hydrogen on zinc oxide has been a very interesting topic. A. L.Dent and R. J. Kokes studied the kinetics and mechanism by IR, H<sub>2</sub>-D<sub>2</sub> exchange and BETmeasurements. They found that there are two types of hydrogen adsorption, in whichtype Ⅰ is rapid and reversible whilst trpe Ⅱ is slow and irreversible. B. Fubini et al.展开更多
Understanding the interactions between graphene nanomaterials(GNMs) and antibiotics in aqueous solution is critical to both the engineering applications of GNMs and the assessment of their potential impact on the fa...Understanding the interactions between graphene nanomaterials(GNMs) and antibiotics in aqueous solution is critical to both the engineering applications of GNMs and the assessment of their potential impact on the fate and transport of antibiotics in the aquatic environment. In this study, adsorption of one common antibiotic, tetracycline, by graphene oxide(GO) and reduced graphene oxide(RGO) was examined with multi-walled carbon nanotubes(MWCNTs) and graphite as comparison. The results showed that the tetracycline adsorption capacity by the four selected carbonaceous materials on the unit mass basis followed an order of GO &gt; RGO &gt; MWCNTs &gt; graphite. Upon normalization by surface area,graphite, RGO and MWCNTs had almost the same high tetracycline adsorption affinity while GO exhibited the lowest. We proposed π-electron-property dependent interaction mechanisms to explain the observed different adsorption behaviors. Density functional theory(DFT) calculations suggested that the oxygen-containing functional groups on GO surface reduced its π-electron-donating ability, and thus decreased the π-based interactions between tetracycline and GO surface. Comparison of adsorption efficiency at different p H indicated that electrostatic interaction also played an important role in tetracycline-GO interactions. Site energy analysis confirmed a highly heterogeneous distribution of the binding sites and strong tetracycline binding affinity of GO surface.展开更多
Fe_3O_4@SiO_2 magnetic nanoparticles functionalized with mesoporous cerium oxide(Fe_3O_4@SiO_2@mCeO_2) was fabricated as a novel adsorbent to remove phosphate from water. The prepared adsorbent was characterized by ...Fe_3O_4@SiO_2 magnetic nanoparticles functionalized with mesoporous cerium oxide(Fe_3O_4@SiO_2@mCeO_2) was fabricated as a novel adsorbent to remove phosphate from water. The prepared adsorbent was characterized by X-ray diffractometry(XRD), transmission electron microscopy(TEM), nitrogen adsorption-desorption and vibrating sample magnetometry(VSM), and its phosphate removal performance was investigated through the batch adsorption studies. Characterization results confirmed that mesoporous cerium oxide was successfully assembled on the surface of Fe_3O_4@SiO_2 nanoparticles, and the synthesized adsorbent possessed a typical core-shell structure with a BET surface area of 195 m^2/g, accessible mesopores of 2.6 nm, and the saturation magnetization of 21.11 emu/g. The newly developed adsorbent had an excellent performance in adsorbing phosphate, and its maximum adsorption capacity calculated from the Langmuir model was 64.07 mg/g. The adsorption was fast, and the kinetic data could be best fitted with the pseudo-second-order kinetic model. The phosphate removal decreased with the increase of solution pH(2 to 10), while the higher ionic strength slightly promoted the phosphate adsorption. The presence of Cl~– and SO^(2–)_4 could enhance the adsorption of phosphate whereas HCO~–_ 3 had interfering effect on the phosphate adsorption. The adsorption mechanism was studied by analyzing Zeta potential and FTIR spectroscopy, and the results indicated that the replacement of the surface hydroxyl groups by phosphate ions with the formation of inner-sphere complex played a key role in the phosphate adsorption. The spent adsorbent could be quickly separated from aqueous solution with the assistance of the external magnetic field, and the adsorbed phosphate could be effectively desorbed using a 1 mol/L NaOH solution.展开更多
Ferrihydrite is an important sink for the toxic heavy metal ions, such as Cr(Ⅵ). As ferrihydrite is thermodynamically unstable and gradually transforms into hematite and goethite, the stability of Cr(Ⅵ)-adsorbed fer...Ferrihydrite is an important sink for the toxic heavy metal ions, such as Cr(Ⅵ). As ferrihydrite is thermodynamically unstable and gradually transforms into hematite and goethite, the stability of Cr(Ⅵ)-adsorbed ferrihydrite is environmentally significant. This study investigated the phase transformation of Cr(Ⅵ)-adsorbed ferrihydrite at different pH in the presence of aqueous Mn(Ⅱ), as well as the fate of Mn(Ⅱ) and Cr(Ⅵ) in the transformation process of ferrihydrite. Among the ferrihydrite transformation products, hematite was dominant, and goethite was minor. The pre-adsorbed Cr(Ⅵ) inhibited the conversion of ferrihydrite to goethite at initial pH 3.0, whereas little amount of adsorbed Mn(Ⅱ) favored the formation of goethite at initial pH 7.0. After the aging process, Cr species in solid phase existed primarily as Cr(Ⅲ) in the presence of Mn(Ⅱ) at initial pH 7.0 and 11.0. The aqueous Mn concentration was predominantly unchanged at initial pH 3.0, whereas the aqueous Mn(Ⅱ) was adsorbed onto ferrihydrite or form Mn(OH)_(2) precipitates at initial pH 7.0 and 11.0, promoting the immobilization of Cr(Ⅵ). Moreover, the oxidation of Mn(Ⅱ) occurred at initial pH 7.0 and 11.0, forming Mn(Ⅲ/Ⅳ)(hydr)oxides.展开更多
Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of ...Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction(XRD), energy-dispersive spectroscopy(EDS), scanning electron microscopy(SEM), transmission electron microscopy(TEM), selected-area electron diffraction(SAED), UV–visible spectroscopy(UV–vis), N2 adsorption–desorption, Fourier transform infrared spectroscopy(FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined.Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb2O5/carbon fiber sample obtained after hydrothermal treatment at 160°C for 14 hr. The maximal Cr(VI) adsorption capacity of the Nb2O5 nanowire/CF sample was 115 mg/g. This Nb2O5/CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(Ⅵ) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1 hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area,abundant surface hydroxyl groups, and good UV-light absorption ability.展开更多
Cryptomelane is a reactive Mn oxide and has been used in removal of heavy metal from wastewaters. Co-doped cryptomelane was synthesized by refluxing at ambient pressure and characterized by powder X-ray diffraction, s...Cryptomelane is a reactive Mn oxide and has been used in removal of heavy metal from wastewaters. Co-doped cryptomelane was synthesized by refluxing at ambient pressure and characterized by powder X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and extended X-ray absorption fine structure spectroscopy, and its performances for removal of Pb^2+ and Cr^3+ from aqueous solutions were investigated. Co doping has a negligible effect on the structure and morphology of cryptomelane but increases the specific surface area and Mn average oxidation state. Mn and Co K-edge extended X-ray absorption fine structure spectroscopy(EXAFS) analysis shows that Co barely affects the atomic coordination environments of Mn, and distances of edge- and corner-sharing Co–Me(Me_Co, Mn) pairs are shorter than those of the corresponding Mn–Me pairs, implying the replacement of framework Mn(III) by Co(III). These Co-doped cryptomelanes can quickly oxidize Cr3+to be HCr O4-and remove 45%–66% of the total Cr in the reaction systems by adsorption and fixation, and they have enhanced Pb2+adsorption capacities. Thus these materials are promising adsorbents for heavy metal remediation. The results demonstrate the design and modification of environmental friendly Mn oxide materials and can help us understand the interaction mechanisms of transition metals with Mn oxides.展开更多
基金National Natural Science Foundation of China(No.51522805)
文摘A novel composites hydrogel adsorbent was facilely synthesized for efficient removal of acid dyes from aqueous solution.The composite hydrogel consisting of TiO_2 nanotubes(TN) and graphene oxide(GO)(H-TN-GO) was characterized by BrunauerEmmett-Teller(BET),transmission electron microscope(TEM),scanning electron microscope(SEM),Raman spectra and X-ray photoelectron spectroscope(XPS).Experimental results elucidated that columnar hydrogel could be tunably prepared with self-assembly by adjusting the proportion of GO/TN,mixing time and pH.The properties of adsorption and regeneration on methyl orange(MO)onto H-TN-GO were investigated respectively.The maximal adsorption capacity of H-TN-GO for MO reached 933.8 and 513.7mg/g under the pH of 4.0 and 6.8,respectively.The adsorption capacity of MO reached the maximum when pH was equivalent to4.0,which attributed to increasing electrostatic attraction.Besides,the adsorption behavior was fitted reasonably better with Freundlich isotherm model than Langmuir model;the adsorption speed was rapid and the removal ratio almost reached 99.5% when the concentration of MO was less than 100 mg/L.After the used adsorbent was irradiated with the ultraviolet ray of 500 W for 3 h,its adsorption capacity could be recovered without significant loss.
文摘Kinetics of oxygen adsorption on single crystal Mn<sub>5</sub>Si<sub>3</sub> (111) surface and initial surface oxidation were investigated. Oxygen chemisorbs dissociatively at room temperature on Mn and Si atoms. A fast oxidation of Si atoms occurs followed by oxidation of Mn atoms at RT. The MnO<sub>2</sub> was reduced by Si atoms and the SiO was oxidized further to SiO<sub>2</sub> during the sample heating.
文摘It is indicative of the TSR result that CH4 was strongly adsorbed on well degassed SrCO3 surface at high temperatUre.A desorption peak of CH4 was found in CH4TPD profile which appeared at ca. 310℃.The strong adsorption of CH4 over the surface of SrCO3 was attributed to the strong basicity of SrO sites resulted from decomposition of SrCO_3
文摘-The i. r. spectra of Na4 [UO2 (CO3)3], Na [UO2 (OH)3] and the surface species of uranium on HTO underthe condition of flowing natural seawater and concentrated seawater (NaCl-NaHCO3-U) were recorded, with the bands of urany! of surface species obtained and the finding that iigands of surface species besides HTO are mainly water and OH, and there are some CO32- groups under the condition of natural seawater. Some relations between the complex properties and the j. r. spectroscopic characters for uranyl complexes were studied, and the transferred change quantity of surface complex was calculated.Structure models for surface species of adsorption are herein presented and the mechanism for uranium adsorption is deduced.
基金financially supported by the National Natural Science Foundation of China(No.21276086)
文摘The effect of mixed oxide support on the performance of Ni/ZnO in the reactive adsorption desulfurization(RADS) reaction was investigated in a fixed bed reactor by using thiophene as the sulfur-containing compound in the model gasoline. A series of oxide supports for Ni/ZnO were synthesized by the co-precipitation method and characterized by XRD, N_2-adsorption, TPR and NH_3-TPD techniques. It was found that the desulfurization capacity of Ni/ZnO was enhanced greatly when active components were supported on the proper mixed oxide. Ni/ZnO supported on oxides exhibited much higher desulfurization efficiency and sulfur adsorption capacity than the unsupported Ni/ZnO and the synthesized Ni/ZnO-SA adsorbent exhibited the highest efficiency for thiophene removal. The higher desulfurization activity and sulfur capacity of Ni/ZnO supported on SiO_2-Al_2O_3 with small particle size, high specific surface area and large pore volume could promote the high dispersion of active metal phase and the transfer of sulfur to ZnO with lower mass transfer resistance. γ-Al_2O_3 species could weaken the interaction of active phases and SiO_2 as well as could increase greatly the amount of weak acids. Therefore, these oxides could impose a great influence on the structure and chemical properties of the catalyst.
基金Funded by the National Natural Science Foundation of China(No.51078372)the Doctoral Program of Higher Specialized Research Foundation(No.20105522110002)
文摘Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.
基金Supported by the National Natural Science Foundation of China(21107143,21207033)the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities(CZY15003)
文摘A simple ultrasound-assisted co-precipitation method was developed to prepare ferroferric oxide/graphene oxide magnetic nanoparticles(Fe_3O_4/CO MNPs).The hysteresis loop of Fe_3O_4/GO MNPs demonstrated that the sample was typical of superparamagnetic material.The samples were characterized by transmission electron microscope,and it is found that the particles are of small size.The Fe_3O_4/GO MNPs were further used as an adsorbent to remove Rhodamine B.The effects of initial pH of the solution,the dosage of adsorbent,temperature,contact time and the presence of interfering dyes on adsorption performance were investigated as well.The adsorption equilibrium and kinetics data were fitted well with the Freundlich isotherm and the pseudosecond-order kinetic model respectively.The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption of Rhodamine B.And the adsorption process was endothermic in nature.Furthermore,the magnetic composite with a high adsorption capacity of Rhodamine B could be effectively and simply separated using an external magnetic field.And the used particles could be regenerated and recycled easily.The magnetic composite could find potential applications for the removal of dye pollutants.
文摘Carbon-supported Pd nanoparticles were prepared by microwave heating-glycol reduction method, and characterized by a wide array of experimental techniques including X-ray diffraction spectroscopy(XRD) and transmission electron microscopy(TEM). The electrooxidation behaviors of ethanol on the Pd/C electrode in alkaline media were investigated using cyclic voltammetry(CV), chronoamperometry(CA), electrochemical impedance spectroscopy(EIS) and single cell performance methods. Pd/C electrode for ethanol oxidation showed high electro-catalytic activity and long term stability. However, it is observed that the current density decreases with the increasing of the potential and negative impedance presents in the potential from-0.1 to0.1 V. The decreasing current density and the negative impedance could be due to the adsorbed intermediates species that inhibited the further oxidation of ethanol. Based on the chemical reaction analysis and EIS spectra, equivalent circuits relating to various potential zones have been obtained. These results reveal the dynamic adsorption of intermediates species on Pd surfaces. Significantly, it is clarified that the adsorption behavior begins from the maximum catalysis of electro-catalysis and ends in the formation of the palladium(II) oxide layer on the electrode surface.
基金Funded by the Faculty of Chemical&Natural Resources Engineering,Universiti Malaysia Pahang through a Local Research Grant Scheme
文摘This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface methodology technique was used to optimize the process conditions and they were found to be: 500 mg/L for H2S initial concentration, 540 min for contact time and 1 g for adsorbent mass. The impacts of three arrangement factors(calcination temperature of impregnated activated carbon(IAC), the calcium solution concentration and contact time of calcination) on the H2S removal efficiency and impregnated AC yield were investigated. Both responses IAC yield(IACY, %) and removal efficiency(RE, %) were maximized to optimize the IAC preparation conditions. The optimum preparation conditions for IACY and RE were found as follows: calcination temperature of IAC of 880 ℃, calcium solution concentration of 49.3% and calcination contact time of 57.6 min, which resulted in 35.8% of IACY and 98.2% RE. In addition, the equilibrium and kinetics of the process were investigated. The adsorbent was characterized using TGA, XRD, FTIR, SEM/EDX, and BET. The maximum monolayer adsorption capacity was found to be 543.47 mg/g. The results recommended that the composite of PKSAC and Ca O could be a useful material for H2S containing wastewater treatment.
基金supported by the National Natural Science Foundation of China(Nos.51290282,51578537,51420105012)the National Water Pollution Control and Treatment Science and Technology Major Project(No.2014ZX07405003)
文摘Antimony(Sb), which can be toxic at relatively low concentrations, may co-exist with Mn(Ⅱ)and/or Fe(Ⅱ) in some groundwater and surface water bodies. Here we investigated the potential oxidation and adsorption pathways of Sb(Ⅲ and V) species in the presence of Mn(Ⅱ) and Mn-oxidizing bacteria, with or without Fe(Ⅱ). Batch experiments were conducted to determine the oxidation and adsorption characteristics of Sb species in the presence of biogenic Mn oxides(BMOs), which were formed in-situ via the oxidation of Mn(Ⅱ) by a Mn-oxidizing bacterium(Pseudomonas sp. QJX-1). Results indicated that Sb(Ⅲ) ions could be oxidized to Sb(V) ions by BMO, but only Sb(V) originating from Sb(Ⅲ) oxidation was adsorbed effectively by BMO. Introduced Fe(Ⅱ) was chemically oxidized to Fe OOH, the precipitates of which mixed with BMO to form a new compound, biogenic Fe–Mn oxides(BFMO). The BMO part of the BFMO mainly oxidized and the Fe OOH of the BFMO mainly adsorbed the Sb species. In aquatic solutions containing both As(Ⅲ) and Sb(Ⅲ), the BFMO that formed in-situ preferentially oxidized Sb over As but adsorbed As more efficiently. Chemical analysis and reverse transcription real-time polymerase chain reaction revealed that the presence of Fe(Ⅱ), As(Ⅲ) and Sb(Ⅲ) accelerated the oxidation of Mn(Ⅱ) but inhibited the activity of Mn-oxidizing bacteria. These results provide significant insights into the biogeochemical pathways of Sb, Mn(Ⅱ) in aquatic ecosystems, with or without Fe(Ⅱ).
文摘Graphene oxide(GO) holds great promise for a broad array of applications in many fields,but also poses serious potential risks to human health and the environment.In this study,the adsorptive properties of GO toward Ca^(2+) and Na+were investigated using batch adsorption experiments,zeta potential measurements,and spectroscopic analysis.When pH increased from 4 to 9,Ca^(2+)adsorption by GO and the zeta potential of GO increased significantly.Raman spectra suggest that Ca^(2+)was strongly adsorbed on the GO via –COO Ca~+ formation.On the other hand,Na+was adsorbed into the electrical diffuse layer as an inert counterion to increase the diffuse layer zeta potential.While the GO suspension became unstable with increasing pH from 4 to 10 in the presence of Ca^(2+),it was more stable at higher pH in the NaC l solution.The findings of this research provide insights in the adsorption of Ca^(2+)on GO and fundamental basis for prediction of its effect on the colloidal stability of GO in the environment.
基金supported by the National Natural Science Foundation of China (21722702 and 21872102)Tianjin Municipal Science and Technology Bureau (18YFZCSF00730, 18YFZCSF00770, 18ZXSZSF00230 and 19YFZCSF00740)。
文摘Advanced oxidation processes(AOPs) have been applied to address multiple environmental concerns including antibiotic resistance genes(ARGs). ARGs have shown an increasing threat to human health,and they are either harbored by antibiotic-resistant bacteria(ARB) or free in the environment.However, the control of ARGs has been substantially limited by their low concentration and the limited knowledge about their interfacial behavior. Herein, a novel AOP catalyst, Ag/TiO_(2)/graphene oxide(GO),combined with a polyvinylidene fluoride(PVDF) ultrafiltration membrane was designed with a synergistic interfacial adsorption and oxidation function to inactivate ARGs with high efficiency in both model solutions and in secondary wastewater effluent, especially when the residue concentration was low.Further analysis showed that the mineralization of bases and phosphodiesters mainly caused the inactivation of ARGs. Moreover, the interfacial adsorption and oxidation processes of ARGs were studied at the molecular level. The results showed that GO was rich in sp^(2) backbones and functional oxygen groups,which efficiently captured and enriched the ARGs via p-p interactions and hydrogen bonds. Therefore,the photogenerated active oxygen species attack the ARGs by partially overcoming the kinetic problems in this process. The Ag/Ti O2/GO catalyst was further combined with a PVDF membrane to test its potential in wastewater treatment applications. This work offers an efficient method and a corresponding material for the inactivation and mineralization of intra/extracellular ARGs. Moreover, the molecularlevel understanding of ARG behaviors on a solid–liquid interface will inspire further control strategies of ARGs in the future.
文摘The adsorption of hydrogen on zinc oxide has been a very interesting topic. A. L.Dent and R. J. Kokes studied the kinetics and mechanism by IR, H<sub>2</sub>-D<sub>2</sub> exchange and BETmeasurements. They found that there are two types of hydrogen adsorption, in whichtype Ⅰ is rapid and reversible whilst trpe Ⅱ is slow and irreversible. B. Fubini et al.
基金supported by the National Natural Science Foundation of China (Nos. 21476130, 21277082, 21337001, 21676161, 41503097)the Natural Science Foundation of Shandong Province (No. ZR2014BP012)+2 种基金the Research Award Fund for Outstanding Young Scientists of Shandong Province, China (No. BS2012HZ008)the Fundamental Research Funds of Shandong University (No. 2015JC020)the China Postdoctoral Science Foundation (No. 2015 M572040)
文摘Understanding the interactions between graphene nanomaterials(GNMs) and antibiotics in aqueous solution is critical to both the engineering applications of GNMs and the assessment of their potential impact on the fate and transport of antibiotics in the aquatic environment. In this study, adsorption of one common antibiotic, tetracycline, by graphene oxide(GO) and reduced graphene oxide(RGO) was examined with multi-walled carbon nanotubes(MWCNTs) and graphite as comparison. The results showed that the tetracycline adsorption capacity by the four selected carbonaceous materials on the unit mass basis followed an order of GO &gt; RGO &gt; MWCNTs &gt; graphite. Upon normalization by surface area,graphite, RGO and MWCNTs had almost the same high tetracycline adsorption affinity while GO exhibited the lowest. We proposed π-electron-property dependent interaction mechanisms to explain the observed different adsorption behaviors. Density functional theory(DFT) calculations suggested that the oxygen-containing functional groups on GO surface reduced its π-electron-donating ability, and thus decreased the π-based interactions between tetracycline and GO surface. Comparison of adsorption efficiency at different p H indicated that electrostatic interaction also played an important role in tetracycline-GO interactions. Site energy analysis confirmed a highly heterogeneous distribution of the binding sites and strong tetracycline binding affinity of GO surface.
基金supported by Natural Science Foundation of China(21706178)"utilization of low rank coal"Strategic Leading Special Fund,Strategic Leading Special Fund of CAS(XDA-07070800,XDA-07070400)the Opening Foundation of State Key Laboratory of Coal Conversion(J16-17-602)
文摘Fe_3O_4@SiO_2 magnetic nanoparticles functionalized with mesoporous cerium oxide(Fe_3O_4@SiO_2@mCeO_2) was fabricated as a novel adsorbent to remove phosphate from water. The prepared adsorbent was characterized by X-ray diffractometry(XRD), transmission electron microscopy(TEM), nitrogen adsorption-desorption and vibrating sample magnetometry(VSM), and its phosphate removal performance was investigated through the batch adsorption studies. Characterization results confirmed that mesoporous cerium oxide was successfully assembled on the surface of Fe_3O_4@SiO_2 nanoparticles, and the synthesized adsorbent possessed a typical core-shell structure with a BET surface area of 195 m^2/g, accessible mesopores of 2.6 nm, and the saturation magnetization of 21.11 emu/g. The newly developed adsorbent had an excellent performance in adsorbing phosphate, and its maximum adsorption capacity calculated from the Langmuir model was 64.07 mg/g. The adsorption was fast, and the kinetic data could be best fitted with the pseudo-second-order kinetic model. The phosphate removal decreased with the increase of solution pH(2 to 10), while the higher ionic strength slightly promoted the phosphate adsorption. The presence of Cl~– and SO^(2–)_4 could enhance the adsorption of phosphate whereas HCO~–_ 3 had interfering effect on the phosphate adsorption. The adsorption mechanism was studied by analyzing Zeta potential and FTIR spectroscopy, and the results indicated that the replacement of the surface hydroxyl groups by phosphate ions with the formation of inner-sphere complex played a key role in the phosphate adsorption. The spent adsorbent could be quickly separated from aqueous solution with the assistance of the external magnetic field, and the adsorbed phosphate could be effectively desorbed using a 1 mol/L NaOH solution.
基金This research was supported by the National Natural Science Foundation of China(No.51978174)the Natural Science Foundation of Guangdong Province(No.2018A030313099).
文摘Ferrihydrite is an important sink for the toxic heavy metal ions, such as Cr(Ⅵ). As ferrihydrite is thermodynamically unstable and gradually transforms into hematite and goethite, the stability of Cr(Ⅵ)-adsorbed ferrihydrite is environmentally significant. This study investigated the phase transformation of Cr(Ⅵ)-adsorbed ferrihydrite at different pH in the presence of aqueous Mn(Ⅱ), as well as the fate of Mn(Ⅱ) and Cr(Ⅵ) in the transformation process of ferrihydrite. Among the ferrihydrite transformation products, hematite was dominant, and goethite was minor. The pre-adsorbed Cr(Ⅵ) inhibited the conversion of ferrihydrite to goethite at initial pH 3.0, whereas little amount of adsorbed Mn(Ⅱ) favored the formation of goethite at initial pH 7.0. After the aging process, Cr species in solid phase existed primarily as Cr(Ⅲ) in the presence of Mn(Ⅱ) at initial pH 7.0 and 11.0. The aqueous Mn concentration was predominantly unchanged at initial pH 3.0, whereas the aqueous Mn(Ⅱ) was adsorbed onto ferrihydrite or form Mn(OH)_(2) precipitates at initial pH 7.0 and 11.0, promoting the immobilization of Cr(Ⅵ). Moreover, the oxidation of Mn(Ⅱ) occurred at initial pH 7.0 and 11.0, forming Mn(Ⅲ/Ⅳ)(hydr)oxides.
基金financially supported by the major Project of the national science and technology of China (No. SQ2017YFGX010248)the Beijing Natural Science Foundation (No. 2172011)
文摘Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction(XRD), energy-dispersive spectroscopy(EDS), scanning electron microscopy(SEM), transmission electron microscopy(TEM), selected-area electron diffraction(SAED), UV–visible spectroscopy(UV–vis), N2 adsorption–desorption, Fourier transform infrared spectroscopy(FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined.Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb2O5/carbon fiber sample obtained after hydrothermal treatment at 160°C for 14 hr. The maximal Cr(VI) adsorption capacity of the Nb2O5 nanowire/CF sample was 115 mg/g. This Nb2O5/CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(Ⅵ) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1 hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area,abundant surface hydroxyl groups, and good UV-light absorption ability.
基金supported by the National Natural Science Foundation of China (Nos.41271253 and 41401250)the Huazhong Agricultural University Doctoral Start-up Fund (Grant 52902-0900206162)
文摘Cryptomelane is a reactive Mn oxide and has been used in removal of heavy metal from wastewaters. Co-doped cryptomelane was synthesized by refluxing at ambient pressure and characterized by powder X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and extended X-ray absorption fine structure spectroscopy, and its performances for removal of Pb^2+ and Cr^3+ from aqueous solutions were investigated. Co doping has a negligible effect on the structure and morphology of cryptomelane but increases the specific surface area and Mn average oxidation state. Mn and Co K-edge extended X-ray absorption fine structure spectroscopy(EXAFS) analysis shows that Co barely affects the atomic coordination environments of Mn, and distances of edge- and corner-sharing Co–Me(Me_Co, Mn) pairs are shorter than those of the corresponding Mn–Me pairs, implying the replacement of framework Mn(III) by Co(III). These Co-doped cryptomelanes can quickly oxidize Cr3+to be HCr O4-and remove 45%–66% of the total Cr in the reaction systems by adsorption and fixation, and they have enhanced Pb2+adsorption capacities. Thus these materials are promising adsorbents for heavy metal remediation. The results demonstrate the design and modification of environmental friendly Mn oxide materials and can help us understand the interaction mechanisms of transition metals with Mn oxides.