期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes 被引量:13
1
作者 Junsik Oh Dennis Espineli Salcedo +1 位作者 Carl Angelo Medriano Sungpyo Kim 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第6期1238-1242,共5页
This study compared three different disinfection processes (chlorination, E-beam, and ozone) and the efficacy of three oxidants (H202, S2O8-, and peroxymonosulfate (MPS)) in removing antibiotic resistant bacter... This study compared three different disinfection processes (chlorination, E-beam, and ozone) and the efficacy of three oxidants (H202, S2O8-, and peroxymonosulfate (MPS)) in removing antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in a synthetic wastewater. More than 30 mg/L of chlorine was needed to remove over 90% of ARB and ARG. For the E-beam method, only 1 dose (kGy) was needed to remove ARB and ARG, and ozone could reduce ARB and ARG by more than 90% even at 3 mg/L ozone concentration. In the ozone process, CT values (concentration × time) were compared for ozone alone and combined with different catalysts based on the 2-log removal of ARB and ARG. Ozone treatment yielded a value of 31 and 33 (mg·min)/L for ARB and ARGs respectively. On the other hand, ozone with persulfate yielded 15.9 and 18.5 (mg.min)/L while ozone with monopersulfate yielded a value of 12 and 14.5 (mg·min)/L. This implies that the addition of these catalysts significantly reduces the contact time to achieve a 2-log removal, thus enhancing the process in terms of its kinetics. 展开更多
关键词 antibiotic resistance ozonation catalyst oxidants disinfection
原文传递
Monohalogenated acetamide-induced cellular stress and genotoxicity are related to electrophilic softness and thiol/thiolate reactivity 被引量:1
2
作者 Justin A.Pals Elizabeth D.Wagner +2 位作者 Michael J.Plewa Menghang Xia Matias S.Attene-Ramos 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第8期224-230,共7页
Haloacetamides(HAMs) are cytotoxic, genotoxic, and mutagenic byproducts of drinking water disinfection. They are soft electrophilic compounds that form covalent bonds with the free thiol/thiolate in cysteine residue... Haloacetamides(HAMs) are cytotoxic, genotoxic, and mutagenic byproducts of drinking water disinfection. They are soft electrophilic compounds that form covalent bonds with the free thiol/thiolate in cysteine residues through an S_N2 reaction mechanism.Toxicity of the monohalogenated HAMs(iodoacetamide, IAM; bromoacetamide, BAM;or chloroacetamide, CAM) varied depending on the halogen substituent. The aim of this research was to investigate how the halogen atom affects the reactivity and toxicological properties of HAMs, measured as induction of oxidative/electrophilic stress response and genotoxicity. Additionally, we wanted to determine how well in silico estimates of electrophilic softness matched thiol/thiolate reactivity and in vitro toxicological endpoints.Each of the HAMs significantly induced nuclear Rad51 accumulation and ARE signaling activity compared to a negative control. The rank order of effect was IAM 〉 BAM 〉 CAM for Rad51, and BAM ≈ IAM 〉 CAM for ARE. In general, electrophilic softness and in chemico thiol/thiolate reactivity provided a qualitative indicator of toxicity, as the softer electrophiles IAM and BAM were more thiol/thiolate reactive and were more toxic than CAM. 展开更多
关键词 Drinking water disinfection byproducts Haloacetamide Toxicity Soft electrophile oxidative stress DNA damage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部